Patents Assigned to Alnis, LLC
  • Publication number: 20030153001
    Abstract: Synthetic polymer complements (SPCs) are provided, as well as methods for their synthesis and use. The SPCs may have surfaces that include functional groups that are complementary to surface sites of targets such as nanostructures or macromolecular targets, and may be capable of specifically interacting with such targets. The positions of the functional groups in one embodiment are stabilized by a polymer network. The SPCs are formed by contacting the target with a set of monomers which self-assemble on the target, and then are polymerized into a network to form the synthetic polymer complement. At least a portion of the surface of the resulting SPC thus may include an imprint of the target. The complex of the SPC and the target may be the desired product. Alternatively, the target is released, for example, by controllably expanding and contracting the crosslinked network. The SPC is isolated and used in many applications.
    Type: Application
    Filed: October 26, 2001
    Publication date: August 14, 2003
    Applicant: Alnis, LLC
    Inventors: David S. Soane, Stephen E. Barry, Andrew Goodwin, David A. Offord, Michael G. Perrott
  • Patent number: 6217901
    Abstract: Synthetic polymer complements (SPCs) are provided, as well as methods for their synthesis and use. The SPCs range in size from about 20 to about 1000 nm. The SPCs have surfaces that are complementary to surface sites of target molecules, resulting in the ability of the SPCs to selectively bind to molecular targets. The molecular recognition capability of these particles enables their use in diagnostic, therapeutic, and separation applications. The SPC is formed by contacting a target template molecule with a set of building blocks solubilized in the interior of a liposome, which building blocks are then polymerized into a network to form the synthetic polymer complement in the interior of the liposome. The target templates are removed to produce complementary sites in a SPC that map the surface of the target, resulting in a water-soluble SPC nanoparticle of similar dimensions as the interior of the liposome that originally supported it and capable of molecular recognition.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: April 17, 2001
    Assignee: Alnis, LLC
    Inventors: Michael G. Perrott, Stephen E. Barry