Patents Assigned to AMERICAN FIRE WIRE, INC.
  • Publication number: 20240112834
    Abstract: A method of installing a fire resistant coaxial cable is described in which the cable has a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests. Another layer of ceramifiable silicone rubber can surround the outer conductor and continue to insulate it from the outside if a low-smoke zero-halogen (LSZH) jacket outer layer burns away.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 11942233
    Abstract: A fire resistant corrugated coaxial cable is described that employs a high-temperature, insulating alkaline earth silicate (AES) wool dielectric. The AES wool dielectric is devoid of water as a constituent. The AES wool may be survivable under conditions of high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests. A layer of ceramifiable silicone rubber or refractory fiber wrap can surround the outer conductor and continues to insulate it from the outside if a low-smoke zero-halogen (LSZH) jacket burns away.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: March 26, 2024
    Assignee: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 11881329
    Abstract: A fire resistant coaxial cable and method of making is described that has a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The ceramifiable silicone rubber can have a polysiloxane matrix with inorganic flux and refractory particles that ceramify under high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: January 23, 2024
    Assignee: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 11145440
    Abstract: Methods of testing and installing fire-resistant coaxial cables are described. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 12, 2021
    Assignee: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Publication number: 20210249158
    Abstract: A fire resistant corrugated coaxial cable is described that employs a high-temperature, insulating alkaline earth silicate (AES) wool dielectric. The AES wool dielectric is devoid of water as a constituent. The AES wool may be survivable under conditions of high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests. A layer of ceramifiable silicone rubber or refractory fiber wrap can surround the outer conductor and continues to insulate it from the outside if a low-smoke zero-halogen (LSZH) jacket burns away.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 12, 2021
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Publication number: 20210183539
    Abstract: A fire resistant coaxial cable and method of making is described that has a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The ceramifiable silicone rubber can have a polysiloxane matrix with inorganic flux and refractory particles that ceramify under high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests.
    Type: Application
    Filed: June 8, 2020
    Publication date: June 17, 2021
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 10726974
    Abstract: A fire resistant coaxial cable and method of making includes a 2-part dielectric made of a polymer foam and a ceramifiable silicone rubber. The polymer foam, which can be polypropylene or other polymers, leaves little-to-no residue in the cable that causes electromagnetic loss when upon burning. The polymer foam can be extruded over a center conductor using an inert gas, such as nitrogen, to propagate the foam, ensuring little-to-no residue in the cable. The ceramifiable silicone rubber can be extruded over the polymer foam. The ceramifiable silicone rubber can have a polysiloxane matrix with inorganic flux and refractory particles that ceramify under high heat, such as temperatures specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The cable is configured to maintain a relatively coaxial relation between a center conductor and an outer conductor even under aforementioned fire tests.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 28, 2020
    Assignee: AMERICAN FIRE WIRE, INC.
    Inventor: William E. Rogers
  • Publication number: 20190237221
    Abstract: Methods of testing and installing fire-resistant coaxial cables are described. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 10283239
    Abstract: Fire-resistant coaxial cables are described as well as methods to manufacture them. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 7, 2019
    Assignee: AMERICAN FIRE WIRE, INC.
    Inventor: William E. Rogers
  • Publication number: 20180174710
    Abstract: Fire-resistant coaxial cables are described as well as methods to manufacture them. The dielectric between the coax cable's central conductor and outer coaxial conductor ceramify under high heat, such as those specified by common fire test standards (e.g., 1850° F./1010° C. for two hours). The dielectric can be composed of ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. Because thick layers of uncured ceramifiable silicone rubber deform under their own weight when curing, multiple thinner layers are coated and serially cured in order to build up the required thickness. A sacrificial sheath mold is used to hold each layer of uncured ceramifiable silicone rubber in place around the central conductor while curing. The outer conductor can be a metal foil, metal braid, and/or corrugated metal.
    Type: Application
    Filed: September 21, 2017
    Publication date: June 21, 2018
    Applicant: American Fire Wire, Inc.
    Inventor: William E. Rogers
  • Patent number: 9773585
    Abstract: A fire-resistant coaxial cable is described in which the dielectric between the central conductor and outer coaxial conductor can ceramify under high heat. The dielectric is composed of a ceramifiable silicone rubber, such as that having a polysiloxane matrix with inorganic flux and refractory particles. An outer wrap of ceramic fiber yarn surrounds the outer conductor and continues to insulate it from the outside if a low smoke zero halogen jacket burns away. Embodiments include those with durable corrugated outer conductors or flexible braided outer conductors. Methods of testing and installation are described.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: September 26, 2017
    Assignee: AMERICAN FIRE WIRE, INC.
    Inventor: William E. Rogers