Patents Assigned to Anpec Electronics Corporation
  • Patent number: 11476762
    Abstract: A power converter including switch components having different safe operating areas is provided. A first terminal of a first high-side switch is coupled to a common voltage. A first terminal of a first low-side switch is connected to a second terminal of the first high-side switch. A second terminal of the first low-side switch is grounded. A first terminal of a second low-side switch is connected to a node between the second terminal of the first high-side switch and the first terminal of the first low-side switch. A second terminal of the second low-side switch is grounded. A safe operating area of the second low-side switch is larger than a safe operating area of the first low-side switch. After the first low-side switch is turned off, the second low-side switch is turned off Before the first low-side switch is turned on, the second low-side switch is turned on.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: October 18, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Cheng-Han Wu, Fu-Chuan Chen
  • Patent number: 11476844
    Abstract: A method of stabilizing data of digital signals is provided. The method includes steps of: (a) determining whether or not next input data is larger than previous output data, if yes, adding a base value to a trend value and then performing step(c), if no, performing step(b); (b) determining whether or not the next input data is smaller than the previous output data, if yes, subtracting the base value from the trend value and performing step(c), if no, performing step(c); (c) determining whether or not the trend value is larger than a positive threshold, if yes, subtracting a trend correction coefficient from the previous output data, if no, performing step(d); and (d) determining whether or not the trend value is smaller than a negative threshold, if yes, adding the trend correction coefficient to the previous output data; if no, outputting the previous output data.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: October 18, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Jia-Hua Hong
  • Patent number: 11437946
    Abstract: A motor output stabilizing circuit and a method are provided. A sensor senses a positive voltage and a negative voltage that are generated with a change in magnetic field strength of a motor of which a rotor is rotating. A comparator compares the positive voltage with the negative voltage to output a Hall signal. An average counter records a first time during which the positive voltage is higher than the negative voltage and a second time during which the negative voltage is higher than the positive voltage, according to the Hall signal. The average counter then averages the first time and the second time to output an averaged time signal. A motor controller circuit controls a motor driver circuit to drive the motor according to the averaged time signal, such that the motor outputs a constant current.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: September 6, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Li-Wei Chen, Shih-Hai Chien
  • Patent number: 11431246
    Abstract: A power converter with an automatic balance mechanism of a flying capacitor is provided. The flying capacitor and a first terminal of an output inductor are connected to a switch circuit. Two terminals of an output capacitor are respectively connected to a second terminal of the output inductor and grounded. Two input terminals of an error amplifier are respectively connected to a node between the output capacitor and the output inductor, and coupled to a reference voltage. The error amplifier outputs an error amplified signal according to a voltage of the node and the reference voltage. A comparator circuit receives a ramp signal. A slope of the ramp signal is proportional to a voltage of the flying capacitor. The comparator circuit compares the ramp signal with the error amplified signal to output a comparison signal. The driving circuit drives the switch circuit according to the comparison signal.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: August 30, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Fu-Chuan Chen
  • Patent number: 11431251
    Abstract: A power converter, a synchronous power converter system and a method of determining switching frequency are provided. A processor is configured to output a synchronous clock signal corresponding to a first switching frequency. A plurality of first-stage power converters are coupled to the processor, and configured to generate a plurality of first output voltages corresponding to the first switching frequency according to the synchronous clock signal and a system voltage. At least one second-stage power converter is coupled to the processor and one of the plurality of first-stage power converters, and configured to generate a second output voltage corresponding to a second switching frequency according to the synchronous clock signal, a multiplied frequency control signal and one of the plurality of first output voltages. The second switching frequency is a multiple of the first switching frequency.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: August 30, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Tse-Hsu Wu, Yun-Chiang Chang, Fu-Chuan Chen
  • Patent number: 11362613
    Abstract: A motor driving circuit and a motor driving method are provided. The motor driving circuit is used to drive the motor and includes an inverter circuit, a control circuit, a current-limiting circuit, a start circuit and a transient circuit. The control circuit controls the inverter circuit to drive the motor with a motor control current according to a set current limit value indicated by a current-limiting signal, and outputs a steady state ready signal in response to the motor reaching a steady state. The current-limiting circuit generates the current-limiting signal according to a start state signal, or generates the current-limiting signal according to a transient signal. The start circuit outputs the start state signal when the motor starts. The transient circuit detects whether the motor is in a transient state, and outputs the transient signal in response to the motor being in a transient state.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: June 14, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Kun-Min Chen
  • Patent number: 11356022
    Abstract: An inductor current detecting circuit is provided. A current supplying circuit supplies a first current signal to an energy storage circuit having a zero voltage during a high-side conduction time, and a second current signal to the energy storage circuit having the zero voltage during a low-side conduction time. A voltage comparator circuit subtracts a valley voltage of a low-side switch from a peak voltage of a high-side switch to obtain a reference voltage, and outputs a comparison signal according to a voltage of the energy storage circuit and a reference voltage. A current modulation controller circuit modulates currents of the first and second current signals according to the comparison signal. A synthesizing circuit synthesizes the first and the second current signals, each of which charges the voltage of the energy storage circuit to be equal to the reference voltage from zero, to obtain an inductor current signal.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: June 7, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Chih-Yuan Chen
  • Patent number: 11355951
    Abstract: A power failure prevention system includes a switch circuit, an energy storage circuit, a voltage detector circuit and a control circuit. The switch circuit includes a first switch, a second switch, a third switch and a fourth switch. The energy storage circuit is connected to the switch circuit. The voltage detector circuit detects an input voltage provided by an input voltage source and a stored voltage of the energy storage circuit. The control circuit controls the switch circuit according to the detected input voltage and stored voltage. When the input voltage is higher than a first threshold, the switch circuit allows the input voltage to charge the energy storage circuit. When the input voltage is lower than a second threshold, the switch circuit allows the stored voltage to discharge to the input voltage source. The first threshold is higher than the second threshold.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: June 7, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Tzu-Yang Yen, Chih-Yuan Chen
  • Patent number: 11307089
    Abstract: A light sensing device is provided, which includes a photodiode, a capacitor circuit and an ADC. The ADC includes a comparator, a counter, a reset switch, a logic circuit and a reference voltage switching circuit. The reference voltage switching circuit is controlled by the logic circuit to a determination reference voltage. When a primary integration time ends, a first node has a residual voltage that does not reach a reference voltage, the logic circuit controls the reference voltage switching circuit to provide the determination reference voltage to the comparator or the capacitor circuit within a secondary integration time, and the comparator outputs a comparison signal, the logic circuit receives the comparison signal within the secondary integration time, and determines the secondary value and outputs to the counter. The counter generates a primary value within the primary integration time, and the primary value is combined with the secondary value.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: April 19, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Chih-Ning Chen
  • Patent number: 11309308
    Abstract: An electrostatic discharge protection circuit includes an internal circuit, a pad, a first high voltage transistor, an electrostatic protection element and a control circuit. A first terminal of the first high voltage transistor is coupled to the pad, a second terminal of the first high voltage transistor is coupled to the internal circuit and includes a control terminal. The electrostatic protection element has one end coupled to the first end of the first high voltage transistor and the other end grounded. The control circuit is coupled between the control terminal of the first high voltage transistor and the ground terminal. The control circuit is configured to control the first high voltage transistor to turn off when the pad receives an electrostatic voltage.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: April 19, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Chien-Lun Chu
  • Patent number: 11258365
    Abstract: A power converter is provided. A driver circuit is connected between a controller circuit and a switch circuit. The switch circuit is connected to an inductor. The inductor is connected in series with a first capacitor and grounded through the first capacitor. A first comparison input terminal of a first comparator is connected to an output terminal between the inductor and the first capacitor. A second comparison input terminal of the first comparator is grounded through a second capacitor. The controller circuit outputs a control signal for controlling the driver circuit to drive the switch circuit according to a comparison signal outputted by the first comparator. A reference current source provides a reference current to the second capacitor. A first terminal of a first resistor is connected to the second capacitor. A second terminal of the first resistor is coupled to a reference potential.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: February 22, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Jen-Chien Hsieh, Tsung-Yu Wu
  • Patent number: 11255881
    Abstract: An inductor current detecting circuit is provided. A differentiator circuit differentiates a high-side voltage signal to generate a first differential signal, and differentiates a low-side voltage signal to generate a second differential signal. A first current source outputs a first charging current according to the first differential signal. A second current source outputs a second charging current according to the second differential signal. First and second terminals of a first switch are respectively connected to the first current source and a first terminal of a second switch. A second terminal of the second switch is connected to the second current source. Two terminals of a capacitor are connected to the second terminal of the first switch and the second current source respectively. The first switch and the second switch are alternately turned on to obtain a continuous waveform.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: February 22, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Chih-Yuan Chen
  • Patent number: 11255726
    Abstract: An optical sensor and a method having a high linearity digital controlling mechanism are provided. An optoelectronic component converts a light energy into a photocurrent. Then, the photocurrent flows to a current mirror and is amplified by a gain to form a charging current by the current mirror to charge a capacitor. A comparator compares a voltage of the capacitor with a reference voltage multiple times to generate a comparison signal. A counter determines a digital value capturing range according to the gain, and counts bit values that fall within the digital value capturing range from the comparison signal to output a counted signal. A noise cancellation processor reduces the digital value capturing range according to the gain, and removes one or more of the bit values that do not fall within the digital value capturing range from the counted signal to output a sensed signal.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 22, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Jing-Min Chen
  • Patent number: 11258381
    Abstract: A motor driving circuit for a single phase motor and a motor driving method for the same are provided. The motor driving circuit includes a motor driver, a Hall sensor, a Hall commutation detection circuit, a period recording circuit, a motor current detection circuit, a cut-off angle adjustment circuit, an angle calculation circuit and a control circuit. The motor current detection circuit detects a motor current value at a commutation point after the single phase motor operates normally. The cut-off angle adjustment circuit generates a cut-off angle adjustment signal indicating a cut-off adjustment angle according to the motor current value when the single phase motor passes the commutation point. The control circuit processes the commutation signal and the cut-off signal generated by the angle calculation circuit to generate a control signal group to control the motor driver to generate an output signal group to drive the motor.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: February 22, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Ching-Shan Lu
  • Patent number: 11255721
    Abstract: A light sensor having an adaptively controlled gain includes a photoelectric element, an operational amplifier, a comparator, an adaptive gain control circuit, a variable capacitor and a pulse accumulator circuit. The photoelectric element converts light energy into a photocurrent. The operational amplifier outputs an error amplified signal based on a gain multiplied by a voltage difference between an input voltage and a reference voltage. The comparator compares the error amplified signal with a voltage of a reference voltage source to output a comparison signal. The adaptive gain control circuit includes a pulse detector circuit and a gain control circuit. The pulse detector circuit detects the comparison signal and a clock signal to output a pulse detected signal. The adaptive gain control circuit outputs a capacitance modulating signal according to the pulse detected signal. A capacitance of the variable capacitor is modulated according to the capacitance modulating signal.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: February 22, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Chih-Ning Chen
  • Patent number: 11226666
    Abstract: A power failure prevention system and method with a power management mechanism are provided. A switch circuit is connected to a first terminal of an inductor. An energy storage circuit is connected to the switch circuit. A pre-charged circuit is connected to an input power source and a second terminal of the inductor. A pre-charging control circuit is connected to the pre-charged circuit and configured to obtain a voltage of a node between the pre-charged circuit and the second terminal of the inductor, a voltage of the switch circuit or a voltage of the energy storage circuit as a pre-charged voltage. The input power source pre-charges the pre-charged circuit. When the pre-charging control circuit determines that the pre-charged voltage is higher than or equal to a reference voltage, the pre-charging control circuit controls the pre-charged circuit, allowing the input power source to charge the energy storage circuit.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: January 18, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Chun-Kai Hsu, Chih-Heng Su, Chih-Yuan Chen
  • Patent number: 11205984
    Abstract: A motor driving circuit and a motor driving method are provided. The motor driving circuit is used to drive a motor, and includes a starting unit, a driving unit, a floating phase selecting unit, a hysteresis comparator, an integration circuit, a first comparator and a control circuit. The control circuit controls the floating phase selecting unit to select a floating phase to output a floating phase voltage signal, and controls, in response to an initial starting signal, the integration circuit to use a first integration time, and determine whether the motor has been successfully started. In response to a successful start, the control circuit controls the integration circuit to use a second integration time, and controls the starting unit to be switched to an operation mode to control the driving unit to drive the motor. The first integration time is greater than the second integration time.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 21, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Yi-Cheng Liu
  • Patent number: 11177731
    Abstract: A current detecting circuit of a constant on-time power converter and a method thereof are provided. The current detecting circuit includes a time detecting circuit and a sample and hold circuit. A control circuit of the constant on-time power converter outputs a lower bridge conduction signal to turn on a lower bridge switch during an on-time of each cycle of the lower bridge conduction signal. The time detecting circuit detects the on-time of a cycle of the lower bridge conduction signal. The sample and hold circuit samples and holds a current of an inductor at a detection time point of a next cycle of the lower bridge conduction signal. A time between a rising edge of a waveform of the next cycle of the lower bridge conduction signal and the detection time point is equal to half the on-time.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: November 16, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Ming-Liang Tsai, Shih-Chung Wei
  • Patent number: 11128311
    Abstract: An analog-to-digital converting system and a method with offset correction mechanisms are provided. The method includes steps of: obtaining a direct current offset of an output voltage of a digital analog conversion unit in a system; obtaining first capacitance weights and second capacitance weights sequentially from small to large; subtracting the direct current offset from a digital signal; and multiplying bit values of the digital signal respectively by the corresponding first capacitance weight value or second capacitance weight value to output a decode signal.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: September 21, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Ming-Hung Chang, Jui-Chu Chung
  • Patent number: 11128218
    Abstract: An adaptive frequency adjusting system is provided. An error amplifier outputs an error amplified signal according to an output voltage of a power converter and a reference voltage. When a comparator determines that a voltage of a slope signal reaches a voltage of the error amplified signal within a maximum on-time of an upper bridge switch, the comparator outputs a reset signal. When the comparator determines that the voltage of the slope signal fails to reach the voltage of the error amplified signal and the maximum on-time ends, the comparator outputs the reset signal and instructs a clock generator to output a clock signal having a lower frequency. A driver circuit turns off the upper bridge switch and turns on a lower bridge switch according to the reset signal, and drives the upper bridge switch based on the clock signal having the lower frequency.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: September 21, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Chun-Kai Hsu, Chih-Heng Su