Patents Assigned to APTEVO RESEARCH AND DEVELOPMENT LLC
  • Patent number: 11939392
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: March 26, 2024
    Assignee: Aptevo Research and Development LLC
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Patent number: 11352426
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD3, which may have at least one humanized CD3-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD3 may have a second binding domain that binds to another target. In one embodiment, multispecific polypeptide molecules bind both tumor antigen-expressing cells and the CD3 subunit of a T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD3-binding poypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: June 7, 2022
    Assignee: APTEVO RESEARCH AND DEVELOPMENT LLC
    Inventors: Philip Tan, John W. Blankenship
  • Patent number: 11312786
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 26, 2022
    Assignees: Aptevo Research and Development LLC, Alligator Bioscience AB
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Mitchell, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas
  • Patent number: 11242400
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: February 8, 2022
    Assignee: Aptevo Research and Development LLC
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Patent number: 10676533
    Abstract: The present disclosure relates to protein molecules that specifically bind to CD123, which may have at least one humanized or human CD123-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to CD123 may have a second binding domain that binds to another target. In one embodiment, multi-specific polypeptide molecules bind both CD123-expressing cells and the T-cell receptor complex on T-cells to induce target-dependent T-cell cytotoxicity, activation, and proliferation. The disclosure also provides pharmaceutical compositions comprising the CD123-binding polypeptide molecules, nucleic acid molecules encoding these polypeptides and methods of making these molecules.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: June 9, 2020
    Assignee: Aptevo Research and Development LLC
    Inventors: Gabriela Hernandez-Hoyos, Elaine T. Sewell, Catherine J. McMahan, David Bienvenue, John W. Blankenship, Danielle Mitchell, Peter Pavlik
  • Patent number: 10307481
    Abstract: The present invention generally provides methods for B-cell reduction in an individual using CD37-specific binding molecules. In particular, the invention provides methods for B-cell reduction using CD37-specific binding molecules alone, or a combination of CD37-specific binding molecules and CD20-specific binding molecules, in some instances a synergistic combination. The invention further provides materials and methods for treatment of diseases involving aberrant B-cell activity. In addition, the invention provides humanized CD37-specific binding molecules.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: June 4, 2019
    Assignee: Aptevo Research and Development LLC
    Inventors: Laura S. Grosmaire, Martha S. Hayden-Ledbetter, Jeffrey A. Ledbetter, Peter A. Thompson, Sandy A. Simon, William Brady
  • Patent number: 10239949
    Abstract: The present disclosure relates to protein molecules that specifically bind to 5T4 and/or 4-1BB. The molecules may have at least one humanized 5T4-binding or 4-1BB-binding domain. Such molecules are useful for the treatment of cancer. The protein molecule binding to 5T4 or 4-1BB may have a second binding domain that binds to another target. The molecules may bind both 5T4-expressing cells and a cell-surface molecule expressed by an effector cell to enhance effector cell activation, proliferation, survival and/or effector-cell mediated cytotoxicity. The disclosure also provides pharmaceutical compositions comprising the 5T4-binding or 4-1BB-binding polypeptide or protein molecules, nucleic acid molecules encoding these polypeptides and methods of making and using these molecules.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: March 26, 2019
    Assignees: Aptevo Research and Development, LLC, Alligator Bioscience AB
    Inventors: David Bienvenue, Gabriela Hernandez-Hoyos, Lynda Misher, Danielle Mitchell, Peter Ellmark, Anna Sall, Christina Furebring, Laura von Schantz, Sara Fritzell, Laura Varas
  • Patent number: 10202452
    Abstract: The present invention relates to mono-specific and multi-specific polypeptides that specifically bind or interact with CD3. These polypeptides can be, but are not limited to, antibodies, fragments thereof, scFvs, Fabs, di-scFvs single domain antibodies, diabodies, dual variable domain binding proteins and polypeptides containing an antibody or antibody fragments. In one embodiment, a multi-specific polypeptide binds both a T-cell receptor complex on T-cells and a tumor antigen to induce target-dependent T-cell cytotoxicity, activation and proliferation.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: February 12, 2019
    Assignee: Aptevo Research and Development LLC
    Inventors: Philip H Tan, Sateesh K Natarajan, Catherine J McMahan
  • Patent number: 10143748
    Abstract: The present invention generally provides methods for B-cell reduction in an individual using CD37-specific binding molecules. In particular, the invention provides methods for B-cell reduction using CD37-specific binding molecules alone, or a combination of CD37-specific binding molecules and CD20-specific binding molecules, in some instances a synergistic combination. The invention further provides materials and methods for treatment of diseases involving aberrant B-cell activity. In addition, the invention provides humanized CD37-specific binding molecules.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 4, 2018
    Assignee: Aptevo Research and Development LLC
    Inventors: Laura Sue Grosmaire, Martha Susan Hayden-Ledbetter, Jeffrey A. Ledbetter, Peter Armstrong Thompson, Sandy Alexander Simon, William Brady
  • Publication number: 20180118823
    Abstract: Multivalent binding peptides, including bi-specific binding peptides, having immunoglobulin effector function are provided, along with encoding nucleic acids, vectors and host cells as well as methods for making such peptides and methods for using such peptides to treat or prevent a variety of diseases, disorders or conditions, as well as to ameliorate at least one symptom associated with such a disease, disorder or condition.
    Type: Application
    Filed: June 8, 2017
    Publication date: May 3, 2018
    Applicant: APTEVO RESEARCH AND DEVELOPMENT LLC
    Inventors: Peter Armstrong THOMPSON, Jeffrey A. LEDBETTER, Martha Susan HAYDEN-LEDBETTER, Laura Sue GROSMAIRE, Robert BADER, William BRADY
  • Patent number: 9782478
    Abstract: The present invention relates to mono-specific and multi-specific polypeptide therapeutics that specifically target cells expressing prostate-specific membrane antigen (PSMA) and are useful for the treatment of prostate cancer (e.g., castrate-resistant prostate cancer), tumor-related angiogenesis or benign prostatic hyperplasia (BPH). In one embodiment, the multi-specific polypeptide therapeutics bind both PSMA-expressing cells and the T-cell receptor complex on T cells to induce target-dependent T-cell cytotoxicity, activation and proliferation.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: October 10, 2017
    Assignee: Aptevo Research and Development LLC
    Inventors: John W. Blankenship, Elaine Todd Sewell, Philip Tan
  • Patent number: 9493564
    Abstract: This disclosure provides a multi-specific fusion protein composed of a CD86 antagonist binding domain and another binding domain that is an IL-10 agonist, an HLA-G agonist, an HGF agonist, an IL-35 agonist, a PD-1 agonist, a BTLA agonist, a LIGHT antagonist, a GITRL antagonist or a CD40 antagonist. The multi-specific fusion protein may also include an intervening domain that separates the other domains. This disclosure also provides polynucleotides encoding the multi-specific fusion proteins, compositions of the fusion proteins, and methods of using the multi-specific fusion proteins and compositions.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: November 15, 2016
    Assignee: APTEVO RESEARCH AND DEVELOPMENT LLC
    Inventors: Peter Armstrong Thompson, Peter Robert Baum, Philip Tan, John W. Blankenship, Sateesh Kumar Natarajan