Patents Assigned to Arcam AB
  • Publication number: 20220380130
    Abstract: Raw material devices, systems that incorporate raw material delivery devices, and methods of supplying raw material using the raw material devices. A raw material delivery device includes a hollow body comprising a first end and a second end, the second end disposed above the first end in a system vertical direction, an inlet disposed at the first end of the hollow body, an outlet disposed at the second end of the hollow body, and a stepped passageway disposed within the hollow body between the inlet and the outlet. The stepped passageway is configured to deliver raw material via one or more steps from the inlet to the outlet.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Applicant: ARCAM AB
    Inventors: Karl Hansson, Peter Karlsson
  • Patent number: 11493650
    Abstract: A method for detecting a position of an energy beam comprises mapping a first density modulated x-ray signal with a plurality of locations on an energy beam target, thereby generating a model of a background x-ray intensity. The method further comprises forming an x-ray signal time series using subsequent intensity modulated x-ray signals, each resulting from scanning the energy beam along the energy beam target in one of a plurality of directions at one of a plurality of speeds, and determining the position of the energy beam based upon a received x-ray signal strength based on the x-ray signal time series and the model of the background x-ray intensity.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: November 8, 2022
    Assignee: Arcam AB
    Inventor: David Svensson
  • Patent number: 11491575
    Abstract: An electron beam melting machine and a method of operation are provided which maintains constant energy absorption within a build layer by adjusting an incident energy level to compensate for energy not absorbed by the additive powder. This unabsorbed energy is detected in the form of electron emissions, which include secondary electrons, backscattered electrons, and/or electrons which are transmitted through the build platform.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: November 8, 2022
    Assignees: ARCAM AB, AP&C ADVANCED POWERS & COATINGS INC.
    Inventors: Frederic Larouche, Isak Elfström
  • Publication number: 20220339709
    Abstract: Described is an additive manufacturing apparatus for additive manufacturing of three dimensional objects, said apparatus comprises a powder distribution unit movable across a build area for applying a layer of powder material thereon and a solidification device for selectively solidifying the applied powder layer at positions corresponding to a cross section of the object to be manufactured. Said powder distribution unit comprises at least a first and a second powder distributors essentially in parallel with each other and extending in a first direction, said first and second powder distributors are arranged to be adjustably spaced apart in a second direction transversely to said first direction which second direction is essentially in parallel with the direction of movement of said powder distribution unit over said build area.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 27, 2022
    Applicant: Arcam AB
    Inventor: Kristofer Karlsson
  • Patent number: 11458682
    Abstract: The invention relates to a build chamber (1) for an additive manufacturing apparatus (100) for forming a three-dimensional article layer by layer from a powder. The build chamber (1) comprising a build chamber base body (2) and the build chamber base body (2) is formed by at least two segments (4) telescopically coupled together. Associated with the telescopically coupled segments are one or more bellows assemblies, further coupled to support structure configured to raise and/or lower the build table. An associated method is also provided.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: October 4, 2022
    Assignee: ARCAM AB
    Inventor: Kristofer Karlsson
  • Publication number: 20220260509
    Abstract: An electron beam additive manufacturing system includes an electron beam source, an x-ray detection sensor configured to generate a waveform corresponding to an amount of x-rays detected by the x-ray detection sensor, and an electronic control unit comprising a processor and a non-transitory computer-readable memory, the electronic control unit communicatively coupled to the electron beam source and the x-ray detection sensor. The electronic control unit is configured to cause the electron beam source to emit an electron beam such that the electron beam impinges a verification plate, receive the waveform generated by the x-ray detection sensor in response to the x-ray detection sensor capturing x-rays emitted from the impingement of the electron beam with the verification plate, and determine a melt performance of a surface material of the verification plate based on the waveform.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 18, 2022
    Applicant: Arcam AB
    Inventors: David Svensson, Phillip Simon Mahoney
  • Patent number: 11400519
    Abstract: Described is an additive manufacturing apparatus for additive manufacturing of three dimensional objects, said apparatus comprises a powder distribution unit movable across a build area for applying a layer of powder material thereon and a solidification device for selectively solidifying the applied powder layer at positions corresponding to a cross section of the object to be manufactured. Said powder distribution unit comprises at least a first and a second powder distributors essentially in parallel with each other and extending in a first direction, said first and second powder distributors are arranged to be adjustably spaced apart in a second direction transversely to said first direction which second direction is essentially in parallel with the direction of movement of said powder distribution unit over said build area.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: August 2, 2022
    Assignee: Arcam AB
    Inventor: Kristofer Karlsson
  • Publication number: 20220193991
    Abstract: Adjustable guide systems and additive manufacturing systems incorporating the same are disclosed. An adjustable guide system includes a first arm support coupled to a first end of a powder distributor in an additive manufacturing system, a second arm support coupled to a second end of the powder distributor opposite the first end, a plurality of shuttles, and a plurality of guide rails. Each one of the plurality of shuttles is pivotally coupled to the first arm support or the second arm support via one or more link arms. Each one of the plurality of guide rails supports a corresponding one of the plurality of shuttles thereon and allows each shuttle to move along the respective guide rail.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Applicant: ARCAM AB
    Inventor: Karl Hansson
  • Publication number: 20220176458
    Abstract: A method for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with at least two electron beams, said method comprises a pre-heating step, wherein the pre-heating step comprises the sub-step of scanning a pre-heating powder layer area (100) by scanning a first electron beam in a first region (I) and by scanning a second electron beam in a second region (II) distributed over the pre-heating powder layer area (100), wherein consecutively scanned paths are separated by, at least, a security distance (?Y), said sub-step further comprising the step of synchronising the preheating of said first and second electron beams when simultaneously preheating said powder material within said first and second regions respectively, so that said first and second electron beams are always separated to each other with at least a minimum security distance (?X).
    Type: Application
    Filed: February 28, 2022
    Publication date: June 9, 2022
    Applicant: Arcam AB
    Inventor: Anders Snis
  • Patent number: 11338519
    Abstract: Devices, systems, and methods for monitoring a powder layer in additive manufacturing are disclosed. A method includes receiving leading and trailing image data from an image signal processor that is optically coupled to a plurality of leading and trailing optical fibers arranged on a moving powder distributor, the leading and trailing image data corresponding to images of the powder layer, selecting at least one point on the powder bed that is located within a leading region of interest, determining first characteristics of the point, when the point is located within a trailing region of interest due to movement of the moving powder distributor, determining second characteristics of the point, and comparing the first characteristics to the second characteristics to monitor the powder layer distributed by the moving powder distributor.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: May 24, 2022
    Assignee: ARCAM AB
    Inventors: Björn Löfving, Kristofer Karlsson
  • Publication number: 20220143744
    Abstract: An apparatus for forming at least one three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, the apparatus comprising: a powder distributor configured for evenly distributing a layer of powder on top of a work table provided inside a build chamber; and at least one high energy beam source emanating at least one high energy beam configured for fusing the powder layer in selected locations corresponding to the cross section of the three-dimensional article, wherein the apparatus further comprising at least one target area arranged spaced apart from the layer of powder for emanating light when irradiated by the at least one high energy beam.
    Type: Application
    Filed: March 4, 2019
    Publication date: May 12, 2022
    Applicant: Arcam AB
    Inventor: Jonas HELLGREN
  • Publication number: 20220143709
    Abstract: The present specification relates to an additive manufacturing apparatus comprising an X-ray reference object (18) for calibrating an electron beam unit in the additive manufacturing apparatus by detecting X-rays generated by sweeping an electron beam from the electron beam unit over a reference surface (19) of the X-ray reference object (18) and processing the detected signals, the X-ray reference object (18) comprising a support body (20) that has a top surface (21) and comprises a plurality of holes (22) in the top surface (21), The X-ray reference object (18) comprises a plurality of target members (23) inserted into the plurality of holes (22) of the support body (20). The present specification also relates to an X-ray detector to be used in the additive manufacturing apparatus, and to a method for calibrating such an additive manufacturing apparatus.
    Type: Application
    Filed: March 1, 2019
    Publication date: May 12, 2022
    Applicant: Arcam AB
    Inventor: Christian EKBERG
  • Patent number: 11325191
    Abstract: A method for forming a three-dimensional article through successive fusion of parts of a metal powder bed is provided, comprising the steps of: distributing a first metal powder layer on a work table inside a build chamber, directing at least one high energy beam from at least one high energy beam source over the work table causing the first metal powder layer to fuse in selected locations, distributing a second metal powder layer on the work table, directing at least one high energy beam over the work table causing the second metal powder layer to fuse in selected locations, introducing a first supplementary gas into the build chamber, which first supplementary gas comprising hydrogen, is capable of reacting chemically with or being absorbed by a finished three-dimensional article, and releasing a predefined concentration of the gas which had reacted chemically with or being absorbed by the finished three dimensional article.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 10, 2022
    Assignee: Arcam AB
    Inventor: Ulf Ackelid
  • Publication number: 20220134666
    Abstract: A blast nozzle for a depowdering apparatus includes an abrasive material inlet fluidly connected to an abrasive material outlet and a fluid inlet fluidly connected to a fluid outlet, where the fluid outlet at least partially surrounds the abrasive material outlet. The fluid outlet is angled with respect to the abrasive material outlet and configured to emit a fluid stream directed to a focal point, the focal point being laterally spaced apart from the blast nozzle in a fluid flow direction.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 5, 2022
    Applicant: Arcam AB
    Inventors: Stefan Olausson, Håkan Sjölander
  • Patent number: 11292062
    Abstract: A method for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with at least two electron beams, said method comprises a pre-heating step, wherein the pre-heating step comprises the sub-step of scanning a pre-heating powder layer area (100) by scanning a first electron beam in a first region (I) and by scanning a second electron beam in a second region (II) distributed over the pre-heating powder layer area (100), wherein consecutively scanned paths are separated by, at least, a security distance (?Y), said sub-step further comprising the step of synchronising the preheating of said first and second electron beams when simultaneously preheating said powder material within said first and second regions respectively, so that said first and second electron beams are always separated to each other with at least a minimum security distance (?X).
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 5, 2022
    Assignee: Arcam AB
    Inventor: Anders Snis
  • Patent number: 11273607
    Abstract: A depowdering apparatus for depowdering a cake comprising a build part includes a depowdering chamber, a blast nozzle, and a build elevator. The depowdering chamber includes a bottom surface and a build inlet extending through the bottom surface, where the build inlet includes an inlet axis that is substantially vertically oriented. The blast nozzle is positioned within the depowdering chamber and oriented to direct a fluid stream toward the inlet axis. The blast nozzle is laterally spaced from the inlet axis and operable to revolve about the inlet axis on a travel path encircling the inlet axis. The build elevator is arranged below the build inlet in a vertical direction and is operable to raise the cake comprising the build part through the build inlet and into the depowdering chamber along the inlet axis as the blast nozzle is revolved about the inlet axis on the travel path.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: March 15, 2022
    Assignee: ARCAM AB
    Inventors: Stefan Olausson, Håkan Sjölander
  • Publication number: 20220072649
    Abstract: Additive manufacturing systems, and methods of encoding and decoding data within a build chamber of an additive manufacturing system are disclosed. An additive manufacturing system includes a build chamber having a patterned surface, the patterned surface having indicia therein or thereon. The additive manufacturing system further includes an energy beam (EB) gun configured to emit an energy beam and a sensor configured to detect one or more x-ray emissions that are generated as a result of impingement of the energy beam on the patterned surface. The one or more x-ray emissions include characteristics that correspond to the indicia such that data encoded in the indicia can be obtained from the characteristics of the one or more x-ray emissions.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 10, 2022
    Applicant: ARCAM AB
    Inventor: David Svensson
  • Patent number: 11267051
    Abstract: Described is a build chamber for an additive manufacturing apparatus for forming a three-dimensional article layer by layer from a powder. The build chamber comprises a build chamber base body and said build chamber base body is formed by at least two segments telescopically coupled together.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: March 8, 2022
    Assignee: Arcam AB
    Inventor: Kristofer Karlsson
  • Patent number: 11247274
    Abstract: An apparatus for forming at least one three-dimensional article through successive fusion of parts of a powder bed. The apparatus comprises a powder distributor configured for evenly distributing a layer of powder on top of a build table; an energy beam configured for fusing the powder layer in selected locations corresponding to the cross section of the three-dimensional article, the powder distributor comprises an elongated rod provided movable at a predetermined distance above the powder table and with its central axis in parallel with a top surface of the powder table, and a flexible foil attached onto the elongated rod and protruding from the rod towards the powder table; and an elongated device parallel with the powder distributor and arranged onto or over the powder table outside the build table, where the elongated device is arranged for mechanically touching the flexible foil.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: February 15, 2022
    Assignee: Arcam AB
    Inventor: Ulf Ackelid
  • Publication number: 20220040766
    Abstract: A method for forming at least one three-dimensional article through successive fusion of parts of a powder bed on a support structure, the method comprising the steps of: providing at least one model of the three-dimensional article, lowering the support structure a predetermined distance and rotating the support structure a predetermined angle in a first direction before applying a first powder layer covering the lowered and rotated support structure, rotating the support structure the predetermined angle in a second direction opposite to the first direction before directing the at least one first energy beam from the at least one first energy beam source at selected locations of the first powder layer, the at least one first energy beam source causing the first powder layer on the stationary support structure which is stationary to fuse in the selected locations according to the model to form first portions of the three-dimensional article.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Applicant: Arcam AB
    Inventor: Calle Hellestam