Patents Assigned to Aspen Aerogels, Inc.
  • Patent number: 11648521
    Abstract: Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of polyimide-derived carbon aerogel. The carbon aerogel includes silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: May 16, 2023
    Assignee: Aspen Aerogels, Inc.
    Inventors: Nicholas A. Zafiropoulos, Roxana Trifu, Redouane Begag, Wendell E. Rhine, George L. Gould, Alexei A. Erchak, Harris R. Miller, Nicholas Leventis
  • Publication number: 20230134383
    Abstract: The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
    Type: Application
    Filed: December 28, 2022
    Publication date: May 4, 2023
    Applicant: Aspen Aerogels, Inc.
    Inventors: Owen R. Evans, Kathryn E. deKrafft, Nicholas A. Zafiropoulos, Wenting Dong, David J. Mihalcik, George L. Gould, Irene Melnikova
  • Patent number: 11634641
    Abstract: Aerogel materials, aerogel composites, and the like may be improved by the addition of opacifiers to reduce the radiative component of heat transfer. Such aerogel materials, aerogel composites, and the like may also be treated to impart or improve hydrophobicity. Such aerogel materials and methods of manufacturing the same are described.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: April 25, 2023
    Assignee: Aspen Aerogels, Inc.
    Inventors: Owen R. Evans, Wendell E. Rhine, Jon F. Nebo, Jon C. Abeles, Jr.
  • Publication number: 20230085627
    Abstract: The current disclosure provides reinforced aerogel compositions that are durable and easy to handle, have favorable performance in aqueous environments, have favorable insulation properties, and have favorable, reaction to fire, combustion and flame-resistance properties. Also provided are methods of preparing or manufacturing such reinforced aerogel compositions. In certain embodiments, the composition has a silica-based aerogel framework, reinforced with an open-cell macroporous framework, and includes one or more fire-class additives, where the silica-based aerogel framework comprises at least one hydrophobic-bound silicon and the composition or each of its components has desired properties.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 23, 2023
    Applicant: Aspen Aerogels, Inc.
    Inventors: David Mihalcik, Kathryn Elizabeth deKrafft, Nicholas Anthony Zafiropoulos, Owen Richard Evans, George L. Gould, Wibke Lolsberg
  • Patent number: 11605854
    Abstract: Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof. Embodiments include a cathode material within a lithium-air battery, where the cathode is formed of a binder-free, monolithic, polyimide-derived carbon aerogel. The carbon aerogel includes pores that improve the oxygen transport properties of electrolyte solution and improve the formation of lithium peroxide along the surface and/or within the pores of the carbon aerogel. The cathode and underlying carbon aerogel provide optimal properties for use within the lithium-air battery.
    Type: Grant
    Filed: March 21, 2020
    Date of Patent: March 14, 2023
    Assignee: Aspen Aerogels, Inc.
    Inventors: Nicholas A. Zafiropoulos, George L. Gould
  • Patent number: 11588196
    Abstract: The present invention provides a fiber-reinforced aerogel material which can be used as insulation in thermal battery applications. The fiber-reinforced aerogel material is highly durable, flexible, and has a thermal performance that exceeds the insulation materials currently used in thermal battery applications. The fiber-reinforced aerogel insulation material can be as thin as 1 mm less, and can have a thickness variation as low as 2% or less. Also provided is a method for improving the performance of a thermal battery by incorporating a reinforced aerogel material into the thermal battery. Further provided is a casting method for producing thin fiber-reinforced aerogel materials.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: February 21, 2023
    Assignee: Aspen Aerogels, Inc.
    Inventors: Owen Richard Evans, Nicholas Anthony Zafiropoulos, Shannon Olga White, Wenting Dong, Wendell E. Rhine
  • Publication number: 20230032529
    Abstract: Battery thermal management materials, compositions and systems are provided. Exemplary embodiments include a battery thermal management member. The battery thermal management member can include a heat protection layer and a resilient layer. Also provided are methods of preparing or manufacturing such battery thermal management members. In certain embodiments, the heat protection layer can include mica, microporous silica, ceramic fiber, mineral wool, aerogel or combinations thereof.
    Type: Application
    Filed: January 7, 2021
    Publication date: February 2, 2023
    Applicant: ASPEN AEROGELS INC.
    Inventors: Owen Evans, George Gould, Kathryn Dekrafft, David Mihalcik, David Baur
  • Patent number: 11547977
    Abstract: The current disclosure provides reinforced aerogel compositions that are durable and easy to handle, have favorable performance in aqueous environments, have favorable insulation properties, and have favorable, reaction to fire, combustion and flame-resistance properties. Also provided are methods of preparing or manufacturing such reinforced aerogel compositions. In certain embodiments, the composition has a silica-based aerogel framework, reinforced with an open-cell macroporous framework, and includes one or more fire-class additives, where the silica-based aerogel framework comprises at least one hydrophobic-bound silicon and the composition or each of its components has desired properties.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 10, 2023
    Assignee: Aspen Aerogels, Inc.
    Inventors: David J. Mihalcik, Kathryn Elizabeth deKrafft, Nicholas Anthony Zafiropoulos, Owen Richard Evans, George L. Gould, Wibke Lölsberg
  • Patent number: 11517870
    Abstract: The present invention describes various methods for manufacturing gel composite sheets using segmented fiber or foam reinforcements and gel precursors. Additionally, rigid panels manufactured from the resulting gel composites are also described. The gel composites are relatively flexible enough to be wound and when unwound, can be stretched flat and made into rigid panels using adhesives.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: December 6, 2022
    Assignee: Aspen Aerogels, Inc.
    Inventors: Owen R. Evans, Irene Melnikova
  • Publication number: 20220289939
    Abstract: The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
    Type: Application
    Filed: April 6, 2022
    Publication date: September 15, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Owen R. Evans, Kathryn E. deKrafft, Nicholas A. Zafiropoulos, Wenting Dong, David J. Mihalcik, George L. Gould, Irene Melnikova
  • Publication number: 20220278333
    Abstract: The present disclosure discusses a system with a nanoporous carbon material with a pore structure and lithium metal disposed adjacent to the nanoporous carbon material. The present disclosure discussion includes an electrical energy storage device including at least one anode, at least one cathode, and an electrolyte comprising lithium ions, wherein the electrical energy storage device has a first cycle efficiency of at least 50% and a reversible capacity of at least 150 mAh/g.
    Type: Application
    Filed: December 9, 2021
    Publication date: September 1, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Nicholas A. Zafiropoulos, George L. Gould, Alexei Erchak
  • Publication number: 20220259850
    Abstract: The invention relates to insulating composite materials comprising an inorganic aerogel and a melamine foam. The invention also relates to the product method of said materials, and to the use of same.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Pierre-Antoine BONNARDEL, Sophie CHAUSSON, Emilie GERARDIN
  • Patent number: 11413844
    Abstract: Embodiments of the present invention describe secured fiber-reinforced aerogels and laminate structures formed therefrom. In one embodiment a laminate comprises at least one fiber-reinforced aerogel layer adjacent to at least one layer of fiber containing material wherein fibers from said at least one fiber-reinforced aerogel layer are interlaced with fibers of said at least one fiber-containing material. In another embodiment a laminate comprises at least two adjacent fiber-reinforced aerogel layers wherein fibers from at least one fiber-reinforced aerogel layer are interlaced with fibers of an adjacent fiber-reinforced aerogel layer.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 16, 2022
    Assignee: Aspen Aerogels, Inc.
    Inventors: Daniel E. Bullock, Aaron R. Tomich
  • Patent number: 11380953
    Abstract: The present invention provides a fiber-reinforced aerogel material which can be used as insulation in thermal battery applications. The fiber-reinforced aerogel material is highly durable, flexible, and has a thermal performance that exceeds the insulation materials currently used in thermal battery applications. The fiber-reinforced aerogel insulation material can be as thin as 1 mm less, and can have a thickness variation as low as 2% or less. Also provided is a method for improving the performance of a thermal battery by incorporating a reinforced aerogel material into the thermal battery. Further provided is a casting method for producing thin fiber-reinforced aerogel materials.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: July 5, 2022
    Assignee: ASPEN AEROGELS, INC.
    Inventors: Owen Richard Evans, Nicholas Anthony Zafiropoulos, Shannon Olga White, Wenting Dong, Wendell E. Rhine
  • Publication number: 20220209234
    Abstract: The present disclosure is directed to silica-carbon composite materials including a low bulk density carbon material having a skeletal framework of carbon nanofibers, the skeletal framework forming a pore structure comprising an array of interconnected pores. The silica-carbon composite materials further include a conformal coating layer of silica on the carbon nanofibers. Further provided are methods for preparation of the silica-carbon composite materials, and methods for reduction of the silica-carbon composite materials to provide silicon-carbon composite materials.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 30, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Roxana Trifu, Nicholas Leventis, Redouane Begag
  • Patent number: 11374213
    Abstract: Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof. Embodiments include a sulfur-doped cathode material within a lithium-sulfur battery, where the cathode is collector-less and is formed of a binder-free, monolithic, polyimide-derived carbon aerogel. The carbon aerogel includes pores that surround elemental sulfur and accommodate expansion of the sulfur during conversion to lithium sulfide. The cathode and underlying carbon aerogel provide optimal properties for use within the lithium-sulfur battery.
    Type: Grant
    Filed: March 22, 2020
    Date of Patent: June 28, 2022
    Assignee: ASPEN AEROGELS, INC.
    Inventors: Nicholas A. Zafiropoulos, George L. Gould
  • Publication number: 20220185985
    Abstract: The present disclosure is directed to methods of forming polyimide gels. The methods generally include forming a polyamic acid and dehydrating the polyamic acid with a dehydrating agent in the presence of water. The resulting polyimide gels may be converted to polyimide or carbon xerogels or aerogels. The methods are advantageous in providing rapid or even instantaneous gelation, which may be particularly useful in formation of beads comprising the polyimide gels. Polyimide or carbon gel materials prepared according to the disclosed method are suitable for use in environments containing electrochemical reactions, for example as an electrode material within a lithium-ion battery.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 16, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Redouane Begag, Roxana Trifu, Nicholas A. Zafiropoulos, Harris R. Miller, George L. Gould, Nicholas Leventis
  • Publication number: 20220185970
    Abstract: The present disclosure is directed to methods of forming polyamic acid and polyimide gels in water. The resulting polyamic acid and polyimide gels may be converted to aerogels, which may further be converted to carbon aerogels. Such carbon aerogels have the same physical properties as carbon aerogels prepared from polyimide aerogels obtained according to conventional methods, i.e., organic solvent-based. The disclosed methods are advantageous in reducing or avoiding costs associated with use and disposal of potentially toxic solvents and byproducts. Gel materials prepared according to the disclosed methods are suitable for use in environments involving electrochemical reactions, for example as an electrode material within a lithium-ion battery.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 16, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Nicholas Leventis, Roxana Trifu, Redouane Begag, George L. Gould, Nicholas A. Zafiropoulos, Harris R. Miller
  • Publication number: 20220177765
    Abstract: The present disclosure can provide aerogel compositions which have a thermal storage capacity, and which are durable and easy to handle. The present disclosure can provide aerogel compositions which include PCM coatings, particle mixtures, or PCM materials confined within the porous network of an aerogel composition. The present disclosure can provide methods for producing aerogel compositions by coating an aerogel composition with PCM materials, by forming particle mixtures with PCM materials, or by confining PCM materials within the porous network of an aerogel composition.
    Type: Application
    Filed: September 27, 2021
    Publication date: June 9, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Roxana Trifu, Redouane Begag, George Gould, Shannon White
  • Publication number: 20220081532
    Abstract: The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
    Type: Application
    Filed: November 19, 2021
    Publication date: March 17, 2022
    Applicant: Aspen Aerogels, Inc.
    Inventors: Owen R. Evans, Kathryn E. deKrafft, Nicholas A. Zafiropoulos, Wenting Dong, David J. Mihalcik, George L. Gould, Irene Melnikova