Patents Assigned to Astralux, Inc.
  • Patent number: 7553446
    Abstract: A decontamination method is provided that contacts a biologically contaminated object with first radiation having a first wavelength distribution and with second radiation having a second wavelength distribution. The first radiation kills at least most of the microbes on the surface of the contaminated object but not in an interior region of the object. The second radiation kills at least most of the microbes in the interior region of the object.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: June 30, 2009
    Assignee: Astralux, Inc.
    Inventors: Randolph Edward Treece, Jimmy Ray Smith, Jr., Douglas W. Swartz
  • Publication number: 20090115052
    Abstract: A hybrid electronic device incorporating both Si and non-Si semiconductor components, utilizing SiC, diamond, or another highly thermally conductive material as an underlying heat spreader. The hybrid electronic device is comprised of some combination of components fabricated in: (1) the underlying heat spreader itself; (2) a thin Si layer attached to the heat spreader via wafer bonding; and/or (3) a discrete semiconductor electronics die soldered to the heat spreader.
    Type: Application
    Filed: May 27, 2008
    Publication date: May 7, 2009
    Applicant: Astralux, Inc.
    Inventors: Randolph E. Treece, Steven Gregory Whipple, John Torvik
  • Patent number: 7112515
    Abstract: A hybrid semiconductor substrate assembly is made by first forming a silicon oxide (SiOx) layer within a silicon carbide wafer, thus forming a silicon carbide membrane on top of the silicon oxide layer and on a surface of the silicon carbide wafer. Optionally, the silicon oxide layer is then thermally oxidized in the presence of steam or oxygen. A substrate-of-choice is then wafer bonded to the silicon carbide membrane, optionally in the presence of a wetting layer that is located intermediate the substrate-of-choice and the silicone carbide membrane, the wetting layer containing silicon. The silicon oxide layer is then removed by hydrofluoric acid etching, to thereby provide a hybrid semiconductor substrate assembly that includes the substrate-of-choice wafer bonded to the silicon carbide membrane. The hybrid semiconductor substrate assembly is then annealed.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 26, 2006
    Assignee: Astralux, Inc.
    Inventor: John Targe Torvik
  • Patent number: 6927422
    Abstract: A direct-wafer-bonded, double heterojunction, light emitting semiconductor device includes an ordered array of quantum dots made of one or more indirect band gap materials selected from a group consisting of Si, Ge, SiGe, SiGeC, 3C—SiC, and hexagonal SiC, wherein the quantum dots are sandwiched between an n-type semiconductor cladding layer selected from a group consisting of SiC, 3C—SiC, 4H—SiC, 6H—SiC and diamond, and a p-type semiconductor cladding layer selected from a group consisting of SiC, 3C—SiC, 4H—SiC, 6H—SiC and diamond. A Ni contact is provided for the n-type cladding layer. An Al, a Ti or an Al/Ti alloy contact is provided for the p-type cladding layer. The quantum dots have a thickness that is no greater than about 250 Angstroms, a width that is no greater than about 200 Angstroms, and a center-to-center spacing that is in the range of from about 10 Angstroms to about 1000 Angstroms.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: August 9, 2005
    Assignee: Astralux, Inc.
    Inventor: John Tarje Torvik
  • Patent number: 6893932
    Abstract: A bipolar transistor includes a collector that is selected from the group SiC and SiC polytypes (4H, 6H, 15R, 3C . . . ), a base that is selected from the group Si, Ge and SiGe, at least a first emitter that is selected from the group Si, SiGe, SiC, amorphous-Si, amorphous-SiC and diamond-like carbon, and at least a second emitter that is selected from the group Si, SiGe, SiC, amorphous-Si, amorphous-SiC and diamond-like carbon. Direct-wafer-bonding is used to assemble the bipolar transistor. In an embodiment the bandgap of the collector, the bandgap of the at least a first emitter and the bandgap of the at least a second emitter are larger than the bandgap of the base.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: May 17, 2005
    Assignee: Astralux, Inc.
    Inventors: John Tarje Torvik, Jacques Isaac Pankove
  • Patent number: 6870204
    Abstract: A bipolar transistor includes a collector that is selected from the group SiC and SiC polytypes (4H, 6H, 15R, 3C . . . ), a base that is selected from the group Si, Ge and SiGe, at least a first emitter that is selected from the group Si, SiGe, SiC, amorphous-Si, amorphous-SiC and diamond-like carbon, and at least a second emitter that is selected from the group Si, SiGe, SiC, amorphous-Si, amorphous-SiC and diamond-like carbon. Direct-wafer-bonding is used to assemble the bipolar transistor. In an embodiment the bandgap of the collector, the bandgap of the at least a first emitter and the bandgap of the at least a second emitter are larger than the bandgap of the base.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: March 22, 2005
    Assignee: Astralux, Inc.
    Inventors: John Tarje Torvik, Jacques Isaac Pankove
  • Publication number: 20040195597
    Abstract: A bipolar transistor includes a collector that is selected from the group SiC and SiC polytypes (4H, 6H, 15R, 3C . . . ), a base that is selected from the group Si, Ge and SiGe, at least a first emitter that is selected from the group Si, SiGe, SiC, amorphous-Si, amorphous-SiC and diamond-like carbon, and at least a second emitter that is selected from the group Si, SiGe, SiC, amorphous-Si, amorphous-SiC and diamond-like carbon. Direct-wafer-bonding is used to assemble the bipolar transistor. In an embodiment the bandgap of the collector, the bandgap of the at least a first emitter and the bandgap of the at least a second emitter are larger than the bandgap of the base.
    Type: Application
    Filed: April 15, 2004
    Publication date: October 7, 2004
    Applicant: Astralux, Inc.
    Inventors: John Tarje Torvik, Jacques Isaac Pankove
  • Publication number: 20040171230
    Abstract: A hybrid semiconductor substrate assembly is made by first forming a silicon oxide (SiOx) layer within a silicon carbide wafer, thus forming a silicon carbide membrane on top of the silicon oxide layer and on a surface of the silicon carbide wafer. Optionally, the silicon oxide layer is then thermally oxidized in the presence of steam or oxygen. A substrate-of-choice is then wafer bonded to the silicon carbide membrane, optionally in the presence of a wetting layer that is located intermediate the substrate-of-choice and the silicone carbide membrane, the wetting layer containing silicon. The silicon oxide layer is then removed by hydrofluoric acid etching, to thereby provide a hybrid semiconductor substrate assembly that includes the substrate-of-choice wafer bonded to the silicon carbide membrane. The hybrid semiconductor substrate assembly is then annealed.
    Type: Application
    Filed: January 20, 2004
    Publication date: September 2, 2004
    Applicant: Astralux, Inc.
    Inventor: John Targe Torvik
  • Patent number: 6632694
    Abstract: A direct-wafer-bonded, double heterojunction, light emitting semiconductor device includes an ordered array of quantum dots made of one or more indirect band gap materials selected from a group consisting of Si, Ge, SiGe, SiGeC, 3C—SiC, and hexagonal SiC, wherein the quantum dots are sandwiched between an n-type semiconductor cladding layer selected from a group consisting of SiC, 3C—SiC, 4H—SiC, 6H—SiC and diamond, and a p-type semiconductor cladding layer selected from a group consisting of SiC, 3C—SiC, 4H—SiC, 6H—SiC and diamond. A Ni contact is provided for the n-type cladding layer. An Al, a Ti or an Al/Ti alloy contact is provided for the p-type cladding layer. The quantum dots have a thickness that is no greater than about 250 Angstroms, a width that is no greater than about 200 Angstroms, and a center-to-center spacing that is in the range of from about 10 Angstroms to about 1000 Angstroms.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: October 14, 2003
    Assignee: Astralux, Inc.
    Inventor: John Tarje Torvik
  • Patent number: 6527857
    Abstract: A GaN boule is epitaxially grown by reacting a vapor of the metal Ga with the gas NH3 at a high temperature of about 1200-degrees C., which high temperature causes the NH3 to dissociate into the two elements N and H. A seed 51 of GaN is placed within a growth-furnace that is heated to about 1200-degrees C., and an input stream of Ga vapor and NH3 gas are directed incident on the GaN seed. An upward-facing, shower head-shaped, manifold is provided to uniformly distribute the Ga vapor and the NH3 gas to the interior of the growth-furnace at a location that is generally below and spaced from the bottom of the GaN seed. GaN vapor is thus formed within this space, generally adjacent to the surface of the boule. At the exterior surface of the GaN seed, the Ga vapor reacts with the NH3 gas to epitaxially form solid GaN on the exterior surface of the GaN seed, and to also form H2.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: March 4, 2003
    Assignee: Astralux, Inc.
    Inventor: Jacques Isaac Pankove
  • Patent number: 6263006
    Abstract: An electroluminescent solid state device includes an active body member that is formed of a single crystalline metal oxide, such as aluminum oxide, that is doped with a rare earth element, such as erbium and/or terbium and an activator atom such as oxygen and/or fluorine. The metal oxide body member is electron excited by kinetic electrons that are emitted by a cold cathode. The ends of the metal oxide body member are polished to form a Fabry-Perot resonator, thus providing for coherent radiation from the device. As an alternative to the use of a Fabry-Perot cavity, an acoustic wave generator is associated with the metal oxide body member in order to launch acoustic waves into the body member. The frequency of energization of the acoustic wave generator operates to select a radiation wavelength from one or more emission wavelengths that are produced by doping the metal oxide body member with one or more rare earth elements.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: July 17, 2001
    Assignee: Astralux, Inc.
    Inventor: Jacques Isaac Pankove
  • Patent number: 6067308
    Abstract: An electroluminescent solid state device includes an active body member that is formed of a single crystalline metal oxide, such as aluminum oxide, that is doped with a rare earth element, such as erbium and/or terbium and an activator atom such as oxygen and/or fluorine. The metal oxide body member is electron excited by kinetic electrons that are emitted by a cold cathode. The ends of the metal oxide body member are polished to form a Fabry-Perot resonator, thus providing for coherent radiation from the device. As an alternative to the use of a Fabry-Perot cavity, an acoustic wave generator is associated with the metal oxide body member in order to launch acoustic waves into the body member. The frequency of energization of the acoustic wave generator operates to select a radiation wavelength from one or more emission wavelengths that are produced by doping the metal oxide body member with one or more rare earth elements.
    Type: Grant
    Filed: September 17, 1998
    Date of Patent: May 23, 2000
    Assignee: Astralux, Inc.
    Inventors: Moeljanto W. Leksono, Chang-Hua Qiu, Jacques Isaac Pankove