Patents Assigned to Athens Corporation
  • Patent number: 5868906
    Abstract: A method for the on-site reprocessing of isopropyl alcohol used in semiconductor manufacturing, to generate an ultradry and ultrapure isopropyl alcohol. This ultradry and ultrapure isopropyl alcohol is produced through a pervaporation step, followed by double distillation. In the first distillation step, an autonomous azeotropic self-stripping distillation column is used to produce an ultradry and partially purified isopropyl alcohol. In the next step, the isopropyl alcohol is distilled in an overhead product distillation column, to produce an ultrapure and ultradry isopropyl alcohol. Alternatively, if the feed isopropyl alcohol contains less than 2000 ppm water, the pervaporation step may be omitted.The resulting isopropyl alcohol has between a high of 100 parts per million (ppm) and a low of 0.1 ppm of water in the isopropyl alcohol. It also has zero particles per milliliter of a size larger than 2.0 microns, zero to 2 particles per milliliter of a size of 0.5 micron to 2.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: February 9, 1999
    Assignee: Athens Corporation
    Inventors: John A. Adams, Gerald A. Krulik, Christopher Blatt, David Persichini
  • Patent number: 5500095
    Abstract: A high efficiency batch sulfuric acid reprocessor system that is capable of producing high purity acid through distillation. Methods of use are also provided. The distillation is monitored and controlled in accordance with temperatures of the system, in particular, the temperature of the column and the temperature of the vapor in a condensing chamber. A stream splitter enables the invention to selectively collect high purity product as well as remove waste or recycle condensate as reflux.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: March 19, 1996
    Assignee: Athens Corporation
    Inventors: Robert T. Shinagawa, Susan M. Jordan, Christopher S. Blatt
  • Patent number: 5443695
    Abstract: The invention relates to an improved method and a novel apparatus for the concentration, separation, and purification of contaminated chemical compounds, wherein the chemical compound is less volatile than the contaminant. The distillation is performed using constant, predetermined distillation parameters.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: August 22, 1995
    Assignee: Athens Corporation
    Inventor: Wallace I. Yuan
  • Patent number: 5164049
    Abstract: Method for the production of ultrapure sulfuric acid including distillation of sulfuric acid material for the removal of soluble impurities and insoluble and non-volatile particles of 10 microns to 0.2 micron or less in size. Reprocessing is also provided. Distillation takes place in a distillation chamber having walls which are provided with means within the chamber to provide smooth convective upward flow of distilling liquid and vapor proximate the walls and means for smooth convective downward flow substantially centrally of the distillation chamber. Redirection means and packing together with reflux means insure the washing of rising vapor and direct the condensing vapor substantially centrally of the distillation chamber. Ultrapure sulfuric acid is also provided having 5 or less particles per cubic centimeter of a size of 0.5 micron and larger and less than 10 ppb of any specific trace impurity such as cations.
    Type: Grant
    Filed: August 22, 1990
    Date of Patent: November 17, 1992
    Assignee: Athens Corporation
    Inventors: R. Scot Clark, John B. Davison, David W. Persichini, Wallace I. Yuan, Bruce A. Lipisko, Alan W. Jones, Allen H. Jones, Jr., Joe G. Hoffman
  • Patent number: 4952386
    Abstract: A method for purifying hydrofluoric acid, comprising the steps of filtering the hydrofluoric acid to remove particulates, passing the filtered acid through a cation exchange material and an anion exchange material to remove ions therefrom, at least periodically automatically monitoring the acid that has passed through at least a predetermined portion of the cation exchange material for a predetermined level of cationic impurity representative of actual or impending ionic breakthrough in the cation exchange material, at least periodically automatically monitoring the acid that has passed through at least a predetermined portion of the anion exchange material for a predetermined level of anionic impurity representative of ionic breakthrough in the anion exchange material, automatically interrupting flow of acid through the anionic or cationic exchange material at or prior to the time the breakthrough in such material occurs, while the flow is interrupted, regenerating the anionic or cationic exchange material,
    Type: Grant
    Filed: May 20, 1988
    Date of Patent: August 28, 1990
    Assignee: Athens Corporation
    Inventors: John B. Davison, Chung-Tseng Hsu
  • Patent number: 4828660
    Abstract: A continuous process and apparatus for the repurification of ultrapure liquids. An oxidant solution comprising ultrapure sulfuric acid, peroxydisulfuric acid, and ultrapure water is continuously withdrawn from a process after use. The withdrawn oxidant is reprocessed continuously by contacting with alumina to remove fluoride ions. Water is continuously separated or stripped from the oxidant solution by heating the solution and bubbling an inert gas therethrough causing the water to vaporize from the solution. The separated oxidant is continuously distilled and condensed to form a purified stream of sulfuric acid. The major portion of this stream is continuously returned to the process. The remaining minor portion is continuously cooled, subjected to analysis for purity, and diluted with ultrapure water. The diluted sulfuric acid is further cooled prior to electrochemical treatment in the anode compartment of an electrochemical cell.
    Type: Grant
    Filed: October 6, 1986
    Date of Patent: May 9, 1989
    Assignee: Athens Corporation
    Inventors: R. Scot Clark, Joe G. Hoffman, John B. Davison, Alan W. Jones, Allen H. Jones, Jr., David W. Persichini, Wallace I. Yuan, Bruce A. Lipisko