Patents Assigned to ATI PROPERTIES LLC
  • Patent number: 10118259
    Abstract: A method of producing a bimetallic tubular component includes providing a first tubular workpiece having an inner diameter and a second tubular workpiece having an outer diameter. The first and second tubular workpieces have dissimilar cold-working processing parameters. The method further includes diffusion bonding the inner diameter of the first tubular workpiece to the outer diameter of the second tubular workpiece, and flowforming the diffusion bonded tubular workpieces to form the bimetallic tubular component.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: November 6, 2018
    Assignee: ATI PROPERTIES LLC
    Inventor: Matthew V. Fonte
  • Patent number: 10113211
    Abstract: A dual hardness steel article comprises a first air hardenable steel alloy having a first hardness metallurgically bonded to a second air hardenable steel alloy having a second hardness. A method of manufacturing a dual hard steel article comprises providing a first air hardenable steel alloy part comprising a first mating surface and having a first part hardness, and providing a second air hardenable steel alloy part comprising a second mating surface and having a second part hardness. The first air hardenable steel alloy part is metallurgically secured to the second air hardenable steel alloy part to form a metallurgically secured assembly, and the metallurgically secured assembly is hot rolled to provide a metallurgical bond between the first mating surface and the second mating surface.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: October 30, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Njall Stefansson, Ronald E. Bailey, Glenn J. Swiatek
  • Patent number: 10105749
    Abstract: A forging die heating or preheating apparatus comprises a burner head comprising a plurality of flame ports. The burner head is oriented to compliment an orientation of at least a region of a forging surface of a forging die and is configured to receive and combust a supply of an oxidizing gas and a supply of a fuel and produce flames at the flame ports. The plurality of flame ports are configured to impinge the flames onto the forging surface of the forging die to substantially uniformly heat at least the region of the forging surface of the forging die.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 23, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Urban J. DeSouza, Robin M. Forbes Jones, Billy B. Hendrick, Jr., Alonzo L. Liles, Ramesh S. Minisandram, Sterry A. Shaffer
  • Patent number: 10094003
    Abstract: An alpha-beta titanium alloy comprises, in weight percentages: an aluminum equivalency in the range of 2.0 to 10.0; a molybdenum equivalency in the range of 0 to 20.0; 0.3 to 5.0 cobalt; and titanium. In certain embodiments, the alpha-beta titanium alloy exhibits a cold working reduction ductility limit of at least 25%, a yield strength of at least 130 KSI (896.3 MPa), and a percent elongation of at least 10%. A method of forming an article comprising the cobalt-containing alpha-beta titanium alloy comprises cold working the cobalt-containing alpha-beta titanium alloy to at least a 25 percent reduction in cross-sectional area. The cobalt-containing alpha-beta titanium alloy does not exhibit substantial cracking during cold working.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: October 9, 2018
    Assignee: ATI PROPERTIES LLC
    Inventor: John W. Foltz, IV
  • Patent number: 10053758
    Abstract: Certain embodiments of a method for increasing the strength and toughness of a titanium alloy include plastically deforming a titanium alloy at a temperature in an alpha-beta phase field of the titanium alloy to an equivalent plastic deformation of at least a 25% reduction in area. After plastically deforming the titanium alloy in the alpha-beta phase field, the titanium alloy is not heated to or above the beta transus temperature of the titanium alloy. After plastic deformation, the titanium alloy is heat treated at a heat treatment temperature less than or equal to the beta transus temperature minus 20° F. (11.1° C.).
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: August 21, 2018
    Assignee: ATI Properties LLC
    Inventor: David J. Bryan
  • Patent number: 10011885
    Abstract: A method of producing an article selected from a titanium article and a titanium alloy article comprises melting feed materials with a source of hydrogen to form a molten heat of titanium or a titanium alloy, and casting at least a portion of the molten heat to form a hydrogenated titanium or titanium alloy ingot. The hydrogenated ingot is deformed at an elevated temperature to form a worked article comprising a cross-sectional area smaller than a cross-sectional area of the hydrogenated ingot. The worked article is dehydrogenated to reduce a hydrogen content of the worked article. In certain non-limiting embodiments of the method, the dehydrogenated article comprises an average ?-phase particle size of less than 10 microns in the longest dimension.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: July 3, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Richard L. Kennedy, Robert M. Davis, Rex W. Bradley, Robin M. Forbes Jones
  • Patent number: 9995485
    Abstract: A hold down mechanism for releasably securing a refractory lining to a furnace. The hold down mechanism can comprise plate segments that form a composite plate. The plate segments can comprise a first plate segment structured to articulate relative to a second plate segment. Furthermore, a gap in the hold down mechanism can be structured to adjust in response to a thermal condition of the composite plate, such as thermal expansion or thermal contraction of at least one plate segment. The composite plate can also comprise an articulation plate pivotally coupled to at least one of the first plate segment and the second plate segment via a pivot and/or a slot and pin engagement. The composite plate can further comprise a third plate segment and a second articulation plate pivotally coupled to at least one of the second plate segment and the third plate segment.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: June 12, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Edward A. Kosol, Joseph F. Perez
  • Patent number: 9994929
    Abstract: Processes for the production of tantalum alloys and niobium are disclosed. The processes use aluminothermic reactions to reduce tantalum pentoxide to tantalum metal or niobium pentoxide to niobium metal.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: June 12, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Arnel M. Fajardo, John W. Foltz, IV
  • Patent number: 9951404
    Abstract: One aspect of the present disclosure is directed to low-alloy steels exhibiting high hardness and an advantageous level of multi-hit ballistic resistance with minimal crack propagation imparting a level of ballistic performance suitable for military armor applications. Certain embodiments of the steels according to the present disclosure have hardness in excess of 550 HBN and demonstrate a high level of ballistic penetration resistance relative to conventional military specifications.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: April 24, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Ronald E. Bailey, Thomas R. Parayil, Glenn J. Swiatek
  • Patent number: 9873932
    Abstract: An austenitic stainless steel composition including relatively low nickel and molybdenum levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher nickel and molybdenum levels. Embodiments of the austenitic stainless steel include, in weight %, up to 0.20 C, 2.0 to 9.0 Mn, up to 2.0 Si, 16.0 to 23.0 Cr, 1.0 to 7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05 to 0.35 N, up to 4.0 W, (7.5(C))?(Nb+Ti+V+Ta+Zr)?1.5, up to 0.01 B, up to 1.0 Co, iron and impurities. Additionally, embodiments of the steel may include 0.5?(Mo+W/2)?5.0 and/or 1.0?(Ni+Co)?8.0.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: January 23, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
  • Patent number: 9869003
    Abstract: A method of processing a workpiece to inhibit precipitation of intermetallic compounds includes at least one of thermomechanically processing and cooling a workpiece including an austenitic alloy. During the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: January 16, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Robin M. Forbes Jones, Erin T. McDevitt
  • Patent number: 9822422
    Abstract: A process for reducing flatness deviations in an alloy article is disclosed. An alloy article may be heated to a first temperature at least as great as a martensitic transformation start temperature of the alloy. A mechanical force may be applied to the alloy article at the first temperature. The mechanical force may tend to inhibit flatness deviations of a surface of the alloy article. The alloy article may be cooled to a second temperature no greater than a martensitic transformation finish temperature of the alloy. The mechanical force may be maintained on the alloy article during at least a portion of the cooling of the alloy article from the first temperature to the second temperature.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: November 21, 2017
    Assignee: ATI PROPERTIES LLC
    Inventors: Glenn J. Swiatek, Ronald E. Bailey
  • Patent number: 9822435
    Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(C))?(Nb+Ti+V+Ta+Zr)?1.5, Fe, and incidental impurities.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: November 21, 2017
    Assignee: ATI PROPERTIES LLC
    Inventors: David S. Bergstrom, James M. Rakowski
  • Patent number: 9796005
    Abstract: A method of forming an article from an ??? titanium including, in weight percentages, from about 2.9 to about 5.0 aluminum, from about 2.0 to about 3.0 vanadium, from about 0.4 to about 2.0 iron, and from about 0.2 to about 0.3 oxygen. The method comprises cold working the ??? titanium alloy.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: October 24, 2017
    Assignee: ATI PROPERTIES LLC
    Inventors: John J. Hebda, Randall W. Hickman, Ronald A. Graham
  • Patent number: 9789545
    Abstract: Various non-limiting embodiments disclosed herein relate to nozzle assemblies for conveying molten material, the nozzle assemblies comprising a body, which may be formed from a material having a melting temperature greater than the melting temperature of the molten material to be conveyed, and having a molten material passageway extending therethrough. The molten material passageway comprises an interior surface and a protective layer is adjacent at least a portion of the interior surface of the passageway. The protective layer may comprise a material that is essentially non-reactive with the molten material to be conveyed. Further, the nozzle assemblies according to various non-limiting embodiments disclosed herein may be heated, and may be self-inspecting. Methods and apparatus for conveying molten materials and/or atomizing molten materials using the nozzle assemblies disclosed herein are also provided.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: October 17, 2017
    Assignee: ATI PROPERTIES LLC
    Inventor: Richard L. Kennedy
  • Patent number: 9777361
    Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 3, 2017
    Assignee: ATI PROPERTIES LLC
    Inventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
  • Patent number: 9771637
    Abstract: A composite crucible for growing single crystals comprises an outer crucible of a first material, and an inner liner of a second material having a coefficient of thermal expansion differing from the first material. The outer crucible comprises an inside bore. The inner liner is disposed in the inside bore without diffusion bonding or chemical bonding between the outer crucible and the inner liner. In certain non-limiting embodiments, the first material is one of molybdenum and a molybdenum alloy, and the second material is one of tantalum, niobium, a tantalum alloy, and a niobium alloy.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: September 26, 2017
    Assignee: ATI PROPERTIES LLC
    Inventor: Matthew V. Fonte
  • Patent number: 9765420
    Abstract: Processes for forming an article from an ?+? titanium alloy are disclosed. The ?+? titanium alloy includes, in weight percentages, from 2.90 to 5.00 aluminum, from 2.00 to 3.00 vanadium, from 0.40 to 2.00 iron, and from 0.10 to 0.30 oxygen. The ?+? titanium alloy is cold worked at a temperature in the range of ambient temperature to 500° F., and then aged at a temperature in the range of 700° F. to 1200° F.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: September 19, 2017
    Assignee: ATI PROPERTIES LLC
    Inventor: David J. Bryan
  • Patent number: 9765416
    Abstract: A method of melting and refining an alloy comprises vacuum induction melting starting materials to provide a vacuum induction melted alloy. At least a portion of the vacuum induction melted alloy is electroslag remelted to provide an electroslag remelted alloy. At least a portion of the vacuum arc remelted alloy is vacuum arc remelted to provide a singly vacuum arc remelted alloy. At least a portion of the singly vacuum arc remelted alloy is vacuum arc remelted to provide a doubly vacuum arc remelted alloy. In various embodiments, a composition of the vacuum induction melted alloy comprises primarily one of vanadium, chromium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, tantalum, tungsten, rhenium, osmium, iridium, platinum, and gold.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: September 19, 2017
    Assignee: ATI Properties LLC
    Inventors: Anthony V. Banik, Henry E. Lippard, Brandon C. Wilson
  • Patent number: 9683273
    Abstract: A method of decarburizing a molten alloy may generally comprise injecting a first gas comprising at least one of argon, carbon dioxide, and oxygen through a first fluid-conducting portion of a tuyere into the molten alloy below the surface of the molten alloy, and injecting a second gas comprising at least one of argon and carbon dioxide through a second fluid-conducting portion of the tuyere into the molten alloy below the surface of the molten alloy. The tuyere may comprise an inner portion concentrically aligned within an outer portion to define an annulus therebetween. The first gas may be injected through the inner portion, and the second gas may be injected through the annulus.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: June 20, 2017
    Assignee: ATI PROPERTIES LLC
    Inventors: Roy J. Matway, Kenneth G. Malencia, Jay E. Rupert