Patents Assigned to Atom H2O, LLC
  • Publication number: 20230347302
    Abstract: The present disclosure relates to carbon nanotube based desalination membranes and methods of manufacturing thereof. The carbon nanotube based desalination membranes may be manufactured by: providing a polymer matrix; providing carbon nanotubes directly contacting the polymer matrix; stirring the carbon nanotubes into the polymer matrix in order to make a carbon nanotube composite solution; and coating a substrate with the carbon nanotube composite solution to form a carbon nanotube desalination membrane. The carbon nanotube based desalination membranes may provide superior flow rate and high levels of salt rejection.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 2, 2023
    Applicant: Atom H2O, LLC
    Inventor: Huaping Li
  • Patent number: 11785791
    Abstract: Devices, structures, materials and methods for carbon enabled vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Carbon electrodes (such as from graphene) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, carbon electrodes and relevant substrates and gates are utilized to construct LETs, including heterojunction VOLETs.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: October 10, 2023
    Assignee: Atom H2O, LLC
    Inventor: Huaping Li
  • Publication number: 20230227313
    Abstract: Disclosed herein is an apparatus and method for fabrication of large diameter single-walled carbon nanotube films. Advantageously, large diameter single-walled carbon nanotube films may be useful as transparent electrodes with high transparency and lower sheet resistance. In one embodiment, the method includes supplying carrier carbon monoxide and catalyst precursor through a first inlet at a temperature below the reaction temperature of the catalyst precursor; supplying heated carbon monoxide through a second inlet such that the heated carbon monoxide mixes with the carrier carbon monoxide and the catalyst an aerosol; reacting the aerosol in a reaction chamber to form a composite aerosol of single walled carbon nanotubes, metal nanoparticles, carbon monoxide, and carbon dioxide. In this embodiment, the heated carbon monoxide heats the catalyst precursor which reacts with the carbon monoxide to form carbon nanotubes.
    Type: Application
    Filed: December 4, 2020
    Publication date: July 20, 2023
    Applicant: Atom H2O, LLC
    Inventor: Huaping Li
  • Publication number: 20220077392
    Abstract: High-performance carbon nanotube (CNT) based millimeter-wave transistor technologies and demonstrate monolithic millimeter-wave integrated circuits (MMICs) based thereon, and methods and processes for the fabrication thereof are also provided. CNT technologies and MMICs demonstrate improved power efficiency, linearity, noise and dynamic range performance over existing GaAs, SiGe and RF-CMOS technologies. Methods and processes in CNT alignment and deposition, material contact and doping are configured to fabricate high quality CNT arrays beyond the current state-of-the-art and produce high performance RF transistors that are scalable to wafer size to enable fabrication of monolithic integrated circuits based on CNTs.
    Type: Application
    Filed: January 6, 2020
    Publication date: March 10, 2022
    Applicant: Atom H2O, LLC
    Inventor: Huaping Li
  • Patent number: 11177465
    Abstract: Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 16, 2021
    Assignee: Atom H2O, LLC
    Inventor: Huaping Li
  • Patent number: 11069867
    Abstract: An electronically pure carbon nanotube ink, includes a population of semiconducting carbon nanotubes suspended in a liquid, the ink being essentially free of metallic impurities and organic material, and characterized in that when incorporated as a carbon nanotube network in a metal/carbon nanotube network/metal double diode, a nonlinear current-bias curve is obtained on application of a potential from 0.01 V to 100 V. The ink can be used to prepare air-stable n-type thin film transistors having performances similar to current thin film transistors used in flat panel displays amorphous silicon devices and high performance p-type thin film transistors with high-? dielectrics.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: July 20, 2021
    Assignee: Atom H2O, LLC
    Inventor: Huaping Li
  • Patent number: 10978640
    Abstract: Methods for producing and integrating single-walled carbon nanotubes (SWCNT) into existing TFT backplane manufacturing lines are provided. In contrast to LTPS and oxide TFT backplanes, SWCNT TFT backplanes exhibit either equivalent or better figures of merit such as high field emission mobility, low temperature fabrication, good stability, uniformity, scalability, flexibility, transparency, mechanical deformability, low voltage and low power, bendability and low cost. Methods and processes for integrating SWCNTs technologies into existing TFT backplane manufacturing lines, pilot test and mass production can start without additional capex needs are also provided.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: April 13, 2021
    Assignee: Atom H2O, LLC
    Inventor: Huaping Li
  • Patent number: 10957868
    Abstract: Gated organic light-emitting diodes or vertical light emitting transistors are disclosed based on the modulation of charge carrier injection from electrodes into light-emitting materials by applying external gate potential. This gate modulation were achieved in two disclosed methods: 1) a porous electrode allowing mobile ions to stabilize electrochemically doped semiconducting materials that can form ohmic contact with electrodes: 2) an electrode with gate-tunable work function such as Al:LiF composite electrodes.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: March 23, 2021
    Assignee: Atom H2O, LLC
    Inventors: Xinning Luan, Jiang Liu, Huaping Li