Patents Assigned to Aurrion, Inc.
  • Publication number: 20170366880
    Abstract: Embodiments describe transceiver architectures to enable ‘loopback’ operation, thereby allowing or on-chip or intra module characterization of the transceiver. This includes but is not limited to tests such as bit error rate (BER) characterization, received power characterization and calibration of filters (MUX, DMUX etc.) present in the transceiver. Embodiments may also describe architectures for superimposing low-speed data on to the signal coming out of a transmitter, which in turn enables low frequency communication between network elements in the external link.
    Type: Application
    Filed: May 19, 2017
    Publication date: December 21, 2017
    Applicant: Aurrion, Inc.
    Inventors: John M. Garcia, Anand Ramaswamy, Gregory Alan Fish
  • Patent number: 9846285
    Abstract: Embodiments of the invention describe optical devices including a III-V slab having a taper including a first region and a second region smaller than the first. Said first region receives light and confines an optical mode of the received light; thus, as opposed to the prior art solutions, said III-V regions of optical devices perform the optical function of mode confinement. Embodiments of the invention further describe optical devices including a silicon slab to receive light from said III-V slab, and having a taper including a first silicon region and a second silicon region smaller than the first. Said first region receives light and confines an optical mode of the received light. Thus, embodiments of the invention describe optical devices created with a low loss transition from hybrid regions to silicon regions with fewer restrictions on the design of the silicon waveguides and the III-V waveguides.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 19, 2017
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jae Shin
  • Patent number: 9835881
    Abstract: An optical system can automatically lock an adjustable spectral filter to a first wavelength of an incoming light signal, and can automatically filter an additional incoming light signal at the first wavelength. A tunable filter can have a filtering spectrum with an adjustable peak wavelength and increasing attenuation at wavelengths away from the adjustable peak wavelength. The tunable filter can receive first input light, having a first wavelength, and can spectrally filter the first input light to form first output light. A detector can detect at least a fraction of the first output light. Circuitry coupled to the detector and the tunable filter can tune the tunable filter to maximize a signal from the detector and thereby adjust the peak wavelength to match the first wavelength. The tunable filter further can receive second input light and spectrally filter the second input light at the first wavelength.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: December 5, 2017
    Assignee: Aurrion, Inc.
    Inventor: Robert Silvio Guzzon
  • Patent number: 9825429
    Abstract: Described herein are methods, systems, and apparatuses to utilize a semiconductor optical amplifier (SOA) comprising a silicon layer including a silicon waveguide, a non-silicon layer disposed on the silicon layer and including a non-silicon waveguide, first and second mode transition region comprising tapers in the silicon waveguide and/or the non-silicon waveguide for exchanging light between the waveguide, and a plurality of regions disposed between the first and second mode transition regions comprising different cross-sectional areas of the silicon waveguide and the non-silicon waveguide such that confinement factors for the non-silicon waveguide in each of the plurality of regions differ.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: November 21, 2017
    Assignee: AURRION, INC.
    Inventors: Erik Norberg, Brian R. Koch, Gregory Alan Fish
  • Patent number: 9804027
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: October 31, 2017
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 9804475
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 31, 2017
    Assignee: Aurrion, Inc.
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Patent number: 9692207
    Abstract: In the prior art, tunable lasers utilizing silicon-based tunable ring filters and III-V semiconductor-based gain regions required the heterogeneous integration of independently formed silicon and III-V semiconductor based optical elements, resulting in large optical devices requiring a complex manufacturing process (e.g., airtight packaging to couple the devices formed on different substrates, precise alignment for the elements, etc.). Embodiments of the invention eliminate the need for bulk optical elements and hermetic packaging, via the use of hybridized III-V/silicon gain regions and silicon optical components, such as silicon wavelength filters and silicon wavelength references, thereby reducing the size and manufacturing complexity of tunable lasing devices.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: June 27, 2017
    Assignee: Aurrion, Inc.
    Inventors: Alexander W. Fang, Gregory Alan Fish, John Hutchinson
  • Patent number: 9693122
    Abstract: Embodiments describe transceiver architectures to enable ‘loopback’ operation, thereby allowing or on-chip or intra module characterization of the transceiver. This includes but is not limited to tests such as bit error rate (BER) characterization, received power characterization and calibration of filters (MUX, DMUX etc.) present in the transceiver. Embodiments may also describe architectures for superimposing low-speed data on to the signal coming out of a transmitter, which in turn enables low frequency communication between network elements in the external link.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: June 27, 2017
    Assignee: Aurrion, Inc.
    Inventors: John M. Garcia, Anand Ramaswamy, Gregory Alan Fish
  • Patent number: 9685761
    Abstract: Described herein are lasers comprising an output port to output an optical signal, a plurality of waveguide segments forming an optical cavity length, and a resonant optical cavity comprising the optical cavity length, a gain medium included in the resonant optical cavity to amplify the optical signal, and a heating element disposed near at least two of the plurality of waveguide segments, the heating element controllable to adjust the phase of the optical signal by heating the waveguide segments. Described herein are optical devices comprising a first plurality of ports to output a plurality of optical signals, a second plurality of ports to receive the plurality of optical signals, and a plurality of coupling waveguides. The plurality of waveguide may comprise a pair of adjacent waveguides separated by a first distance, each of the pair of adjacent waveguides comprising a different width.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: June 20, 2017
    Assignee: Aurrion, Inc.
    Inventors: Erik Johan Norberg, Brian Koch, Gregory Alan Fish, Hyundai Park, Jared Bauters
  • Patent number: 9684190
    Abstract: Embodiments of the invention describe systems, apparatuses and methods for providing athermicity and a tunable spectral response for optical filters. Finite impulse response (FIR) filters are commonly implemented in photonic integrated circuits (PICs) to make devices such as wavelength division multiplexing (WDM) devices, asymmetric Mach-Zehnder interferometers (AMZIs) and array waveguide gratings (AWGs). Athermicity of an FIR filter describes maintaining a consistent frequency transmission spectrum as the ambient temperature changes. A tunable spectral response for an FIR filter describes changing the spectrum of an FIR filter based on its application, as well as potentially correcting for fabrication deviations from the design. In addition, embodiments of the invention reduce energy dissipation requirements and control complexity compared to prior art solutions.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: June 20, 2017
    Assignee: Aurrion, Inc.
    Inventors: Jonathan Edgar Roth, Daniel Knight Sparacin, Gregory Alan Fish
  • Patent number: 9685762
    Abstract: Described herein are photonic integrated circuits (PICs) comprising a semiconductor optical amplifier (SOA) to output a signal comprising a plurality of wavelengths, a sensor to detect data associated with a power value of each wavelength of the output signal of the SOA, a filter to filter power values of one or more of the wavelengths of the output signal of the SOA, and control circuitry to control the filter to reduce a difference between a pre-determined power value of each filtered wavelength of the output signal of the SOA and the detected power value of each filtered wavelength of the output signal of the SOA.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: June 20, 2017
    Assignee: Aurrion, Inc.
    Inventors: Erik Johan Norberg, John M. Garcia, Brian Koch, Gregory Alan Fish
  • Patent number: 9647426
    Abstract: Embodiments of the invention describe polarization insensitive optical devices utilizing polarization sensitive components. Light comprising at least one polarization state is received, and embodiments of the invention select a first optical path for light comprising a first polarization state or a second optical path for light comprising a second polarization state orthogonal to the first polarization state. The optical paths include components to at least amplify and/or modulate light comprising the first polarization state; the second optical path includes a polarization rotator to rotate light comprising the second polarization state to the first polarization state.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: May 9, 2017
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Erik Johan Norberg, John M. Garcia, Robert Silvio Guzzon, Daniel Knight Sparacin
  • Patent number: 9618696
    Abstract: Embodiments of the invention describe apparatuses, systems, and methods of thermal management for photonic integrated circuits (PICs). Embodiments include a first device and a second device comprising including waveguides, wherein the first and second devices have different thermal operating conditions. A first region is adjacent to a waveguide of the first device, wherein its optical mode is to be substantially confined by the first region, and wherein the first region has a first thermal conductivity to dissipate heat based on the thermal operating condition of the first device. A second region is adjacent to a waveguide of the second device, wherein its optical mode is to be substantially confined by the second region, and wherein the second region has a second thermal conductivity to dissipate heat based on the thermal operating condition of the second device. In some embodiments, thermal cross talk is reduced without significantly affecting optical performance.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: April 11, 2017
    Assignee: Aurrion, Inc.
    Inventors: Anand Ramaswamy, Jonathan Edgar Roth, Erik Norberg, Brian Koch
  • Patent number: 9583913
    Abstract: In the prior art, tunable lasers utilizing silicon-based tunable ring filters and III-V semiconductor-based gain regions required the heterogeneous integration of independently formed silicon and III-V semiconductor based optical elements, resulting in large optical devices requiring a complex manufacturing process (e.g., airtight packaging to couple the devices formed on different substrates, precise alignment for the elements, etc.). Embodiments of the invention eliminate the need for bulk optical elements and hermetic packaging, via the use of hybridized III-V/silicon gain regions and silicon optical components, such as silicon wavelength filters and stabilized wavelength references, thereby reducing the size and manufacturing complexity of tunable lasing devices.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 28, 2017
    Assignee: Aurrion, Inc.
    Inventors: Alexander W. Fang, Gregory Alan Fish, John Hutchinson
  • Patent number: 9557484
    Abstract: Embodiments describe high-efficiency optical waveguide transitions—i.e., creating heterogeneous transitions between Si and III-V semiconductor regions or devices with minimal reflections. This is advantageous for III-V device performance, e.g. for an on-chip lasers achieving lower relative intensity noise (RIN) and lower phase noise by avoiding reflections, higher gain and reduced gain-ripple from an semiconductor optical amplifier (SOA) by avoiding internal reflections in the SOA. Furthermore, in some embodiments, generated photocurrent can be used as a monitor signal for control purposes, thereby avoiding the use of separate tap-monitor photodetectors, which provide additional link loss.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: January 31, 2017
    Assignee: Aurrion, Inc.
    Inventors: Erik Johan Norberg, Jonathan Edgar Roth
  • Patent number: 9525490
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods for utilizing a dynamically reconfigurable optical transmitter. A laser array outputs a plurality of laser signals (which may further be modulated based on electrical signals), each of the plurality of laser signals having a wavelength, wherein the wavelength of each of the plurality of laser signals is tunable based on other electrical signals. An optical router receives the plurality of (modulated) laser signals at input ports and outputs the plurality of received (modulated) laser signals to one or more output ports based on the tuned wavelength of each of the plurality of received laser signals. This reconfigurable transmitter enables dynamic bandwidth allocation for multiple destinations via the tuning of the laser wavelengths.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 20, 2016
    Assignee: Aurrion, Inc.
    Inventors: Brian Koch, Daniel Sparacin, Alexander Fang
  • Patent number: 9513497
    Abstract: Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: December 6, 2016
    Assignee: Aurrion, Inc.
    Inventors: Robert Silvio Guzzon, Erik Norberg, Jonathan Edgar Roth
  • Patent number: 9509122
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods related to utilizing optical cladding layers. According to one embodiment, a hybrid optical device includes a silicon semiconductor layer and a III-V semiconductor layer having an overlapping region, wherein a majority of a field of an optical mode in the overlapping region is to be contained in the III-V semiconductor layer. A cladding region between the silicon semiconductor layer and the III-V semiconductor layer has a spatial property to substantially confine the optical mode to the III-V semiconductor layer and enable heat dissipation through the silicon semiconductor layer.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: November 29, 2016
    Assignee: Aurrion, Inc.
    Inventors: Erik Norberg, Anand Ramaswamy, Brian Koch
  • Patent number: 9509114
    Abstract: Embodiments of the invention describe various configurations for a multi-wavelength laser cavity. A laser cavity may include a shared reflector and a plurality of reflectors. Each of the plurality of reflectors and the shared reflector together form one of the plurality of output wavelength channels. A shared filter is utilized to filter the optical signal of the laser cavity to comprise a subset of a plurality of cavity modes. A (de)multiplexer, comprising a plurality of filtering elements), receives the optical signal and further selects and separates the final lasing wavelengths from the selected subset of cavity modes, and each filtering element outputs an optical signal having a wavelength for one of the output wavelength channels.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: November 29, 2016
    Assignee: Aurrion, Inc.
    Inventors: Erik Johan Norberg, Brian R. Koch, Gregory Alan Fish
  • Patent number: 9431791
    Abstract: Described herein are methods, systems, and apparatuses to utilize a semiconductor optical amplifier (SOA) comprising a silicon layer including a silicon waveguide, a non-silicon layer disposed on the silicon layer and including a non-silicon waveguide, first and second mode transition region comprising tapers in the silicon waveguide and/or the non-silicon waveguide for exchanging light between the waveguide, and a plurality of regions disposed between the first and second mode transition regions comprising different cross-sectional areas of the silicon waveguide and the non-silicon waveguide such that confinement factors for the non-silicon waveguide in each of the plurality of regions differ.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: August 30, 2016
    Assignee: Aurrion, Inc.
    Inventors: Erik Norberg, Brian R. Koch, Gregory Alan Fish