Patents Assigned to Aviva Biosciences Corporation
  • Patent number: 7723029
    Abstract: The present invention recognizes that the determination of an ion transport function or property using direct detection methods, such as patch-clamps, whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and methods of use that allow for the direct analysis of ion transport functions or properties using microfabricated structures that can allow for automated detection of one or more ion transport functions or properties. These biochips and methods of use thereof are particularly appropriate for automating the detection of ion transport functions or properties, particularly for screening purposes.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: May 25, 2010
    Assignee: Aviva Biosciences Corporation
    Inventors: Mingxian Huang, David Rothwarf, Jia Xu, Xiaobo Wang, Lei Wu, Antonio Guia
  • Patent number: 7718419
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: May 18, 2010
    Assignee: Aviva Biosciences Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Publication number: 20080286750
    Abstract: The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and other fluidic components and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and fluidic components and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes.
    Type: Application
    Filed: August 20, 2007
    Publication date: November 20, 2008
    Applicant: Aviva Biosciences Corporation
    Inventors: Jia XU, Antonio Guia, Xiaobo Wang, Lei Wu, Junquan Xu, Mingxian Huang, David Rothwarf
  • Publication number: 20080200349
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: August 20, 2007
    Publication date: August 21, 2008
    Applicants: AVIVA BIOSCIENCES CORPORATION, TSINGHUA UNIVERSITY, CAPITAL BIOCHIP CORPORATION
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7262016
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: August 28, 2007
    Assignee: Aviva Biosciences Corporation
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Liang Tao, David M. Rothwarf
  • Publication number: 20070160984
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a bead, which bead comprises: a) a magnetizable substance; and b) an electrically conductive substance or an optical labeling substance. Methods and kits for isolating, detecting and manipulating moieties and synthesizing libraries using the beads are also provided.
    Type: Application
    Filed: March 6, 2007
    Publication date: July 12, 2007
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Tao, Jing Cheng
  • Patent number: 7214427
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a bead, which bead comprises: a) a magnetizable substance; and b) an electrically conductive substance or an optical labeling substance. Methods and kits for isolating, detecting and manipulating moieties and synthesizing libraries using the beads are also provided.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: May 8, 2007
    Assignee: Aviva Biosciences Corporation
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Liang Tao, Jing Cheng
  • Patent number: 7166443
    Abstract: The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells from a complex fluid sample. In particular, the enrichment of fetal cells from maternal samples, such as maternal blood samples, can greatly aid in the detection of fetal abnormalities or a variety of genetic conditions. In addition, the present invention recognizes that the enrichment of rare malignant cells from patient samples, can aid in diagnosis, prognosis, and development of therapeutic modalities for patients. The invention includes microfabricated filters for filtering fluid samples and methods of enriching rare cells of fluid samples using microfabricated filters of the present invention. The invention also includes solutions for the selective sedimentation of red blood cells (RBCs) from a blood sample and methods of using selective RBC sedimentation solutions for enriching rare cells of a fluid sample.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: January 23, 2007
    Assignee: Aviva Biosciences Corporation
    Inventors: George Walker, Junquan Xu, Douglas Yamanishi, Paul Hujsak, Lei Wu, Mingxian Huang, Guoliang Tao, Sara Snyder, Charina Yap
  • Publication number: 20060228749
    Abstract: This invention relates generally to the field of moiety or molecule manipulation in a chip format. In particular, the invention provides a method for manipulating a moiety in a microfluidic application, which method comprises: a) coupling a moiety to be manipulated onto surface of a binding partner of said moiety to form a moiety-binding partner complex; and b) manipulating said moiety-binding partner complex with a physical force in a chip format, wherein said manipulation is effected through a combination of a structure that is external to said chip and a structure that is built-in in said chip, thereby said moiety is manipulated.
    Type: Application
    Filed: June 7, 2006
    Publication date: October 12, 2006
    Applicant: AVIVA BIOSCIENCES CORPORATION
    Inventors: Xiaobo Wang, Lei Wu, Jing Cheng, Weiping Yang, Junquan Xu
  • Patent number: 7081192
    Abstract: This invention relates generally to the field of moiety or molecule manipulation in a chip format. In particular, the invention provides a method for manipulating a moiety in a microfluidic application, which method comprises: a) coupling a moiety to be manipulated onto surface of a binding partner of said moiety to form a moiety-binding partner complex; and b) manipulating said moiety-binding partner complex with a physical force in a chip format, wherein said manipulation is effected through a combination of a structure that is external to said chip and a structure that is built-in in said chip, thereby said moiety is manipulated.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: July 25, 2006
    Assignee: Aviva Biosciences Corporation
    Inventors: Xiaobo Wang, Lei Wu, Jing Cheng, Weiping Yang, Junquan Xu
  • Patent number: 7015047
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: March 21, 2006
    Assignee: Aviva Biosciences Corporation
    Inventors: Mingxian Huang, Lei Wu, Xiaobo Wang, Junquan Xu, Guo Liang Tao, David M. Rothwarf
  • Patent number: 6900013
    Abstract: The present invention recognizes that identifying genes expressed during developmental processes, stress responses, and disease states can advance understanding of these biological functions, and can contribute to identifying targets for therapeutic drugs. In addition, the present invention recognizes that rapid and reliable profiling of genetic variations, such as mutations and SNPs, is of increasing importance to diagnostics, prognostics, forensics, heredity determinations, and pharmacogenetics. One aspect of the present invention provides a method of identifying one or more nucleic acid molecules that are expressed under a given set of conditions based on their complementarity to known sequences, or one or more mutations or SNPs in a population of nucleic acid molecules.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: May 31, 2005
    Assignee: AVIVA Biosciences Corporation
    Inventors: Guoqing Wang, Lei Wu, Xiaobo Wang, Jing Cheng, WeiPing Yang
  • Patent number: 6881314
    Abstract: This invention relates generally to the field of field-flow-fractionation. In particular, the invention provides apparatuses and methods for the discrimination of matters utilizing acoustic force, or utilizing acoustic force with electrophoretic or dielectrophoretic force, in field flow fractionation.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: April 19, 2005
    Assignee: Aviva Biosciences Corporation
    Inventors: Xiao-Bo Wang, Jing Cheng, Lei Wu, Junquan Xu
  • Patent number: 6716642
    Abstract: The present invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: April 6, 2004
    Assignee: Aviva Biosciences Corporation
    Inventors: Lei Wu, Xiaobo Wang, Jing Cheng, Weiping Yang, YuXiang Zhou, LiTian Liu, Junquan Xu
  • Patent number: 6630835
    Abstract: The present invention concerns a high throughput electrorotation chip having an array of electrorotation units and methods of use thereof. To make the high throughput electrorotation chip, a plurality of electrorotation units (EU) are fabricated on a substrate or support and each EU is capable of producing a rotating electric field upon the application of an appropriate electrical signal. Exemplary embodiments include a row-column configuration of EUs having four electrode elements realized through two conductive-layers. The electrode elements may be linear, concave, or convex. Thin plates having one or multiple holes are bound to high-throughput electrorotation chips to form assay chambers having one or multiple wells. Particles can be introduced to the wells and electrorotation measurements can be performed on the particles.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: October 7, 2003
    Assignee: Aviva Biosciences Corporation
    Inventors: Jing Cheng, Junquan Xu, Xiaoshan Zhu, Litian Liu, Xiao-Bo Wang, Lei Wu
  • Patent number: 6596143
    Abstract: A device acts as a particle switch to transport and/or re-direct microparticles which are in a fluid suspension. The switch comprises at least three structural branches and the branches may be connected at a common junction. Particles can be transported along the branches as a result of the forces generated along that branch. Particles are transported into or out of the particle switch via the ends of the branches. Particles can be switched from one branch into one of the other branches. Depending on the properties of the particles, the transportation mechanism may be traveling-wave-dielectrophoresis or traveling-wave-electrophoresis.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: July 22, 2003
    Assignee: Aviva Biosciences Corporation
    Inventors: Xiao-Bo Wang, Weiping Yang, Junquan Xu, Jing Cheng, Lei Wu
  • Patent number: 6448794
    Abstract: The present invention concerns a high throughput electrorotation chip having an array of electrorotation units and methods of use thereof. To make the high throughput electrorotation chip, a plurality of electrorotation units (EU) are fabricated on a substrate or support and each EU is capable of producing a rotating electric field upon the application of an appropriate electrical signal. Exemplary embodiments include a row-column configuration of EUs having four electrode elements realized through two conductive-layers. The electrode elements may be linear, concave, or convex. Thin plates having one or multiple holes are bound to high-throughput electrorotation chips to form assay chambers having one or multiple wells. Particles can be introduced to the wells and electrorotation measurements can be performed on the particles.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: September 10, 2002
    Assignee: Aviva Biosciences Corporation
    Inventors: Jing Cheng, Junquan Xu, Xiaoshan Zhu, Litian Liu, Xiao-Bo Wang, Lei Wu