Patents Assigned to Bechtel Power Corporation
  • Patent number: 10641173
    Abstract: In a gas turbine system including a first gas turbine generator, a heat recovery steam generator and a steam turbine generator heat rejection system, the present invention relates to a method for CO2 capture from flue gas in said system, said method including: (a) diverting an amount of heat recovery steam generator flue gas from the CO2 capture plant; and (b) mixing the diverted heat recovery steam generator flue gas with an air stream, forming a combined gas stream, wherein (1) the combined gas stream is fed to a second gas turbine generator; (2) exhaust gas from the second gas turbine generator is mixed with exhaust gas from the first gas turbine generator, forming a combined exhaust gas stream; and (3) the combined exhaust gas stream enters the heat recovery steam generator, with the CO2 content of the combined exhaust gas stream increased through supplementary firing in the heat recovery steam generator.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: May 5, 2020
    Assignee: BECHTEL POWER CORPORATION
    Inventor: Seyfettin Can Gulen
  • Patent number: 9249723
    Abstract: A power generation plant has two internal combustion engines (ICE) coupled in a compound configuration to operate electrical generators. A first ICE is a piston/cylinder engine producing high temperature and high pressure exhaust. The exhaust is coupled to the combustion air inlet of the second ICE, which is a gas turbine engine. A heat exchanger transfers heat from the exhaust of the first ICE to a bottoming cycle for additional power generation, also reducing the temperature at the turbine engine combustor. The second ICE (the gas turbine) is operated without an intake compressor, relying instead on the high pressure of the first ICE exhaust. The drive shaft of the gas turbine (or an associated generator/motor or a common shaft) operates a multi-stage turbo-compressor at the combustion air intake of the first ICE for improving engine power output without sapping exhaust energy as with a turbocharger.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: February 2, 2016
    Assignee: Bechtel Power Corporation
    Inventor: Seyfettin C. Gülen
  • Publication number: 20150167647
    Abstract: A hybrid solar energy power plant combines solar collector technologies with different cost and performance characteristics, to exploit the advantages and mitigate the disadvantages of each technology. The synergies allow significant improvement in plant economics. Embodiments include a high concentrating solar tower plus lower concentrating linear Fresnel or parabolic trough solar energy collectors. During sunlight, the lower concentrating collector generates steam for a turbine producing electric power. The higher concentrating (hotter) collector increases the temperature of this steam and also stores thermal energy by accumulating hot molten salt. Absent sunlight, the stored energy generates steam for power and also optimizes system temperatures, such as for quick startup from a cold state. In a hybrid plant, energy storage also improves utilization of collector capacity.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Bechtel Power Corporation
    Inventors: Seyfettin C. Gülen, Ralph Gerhard Zimmermann
  • Publication number: 20150128558
    Abstract: Mechanical work for electric power generation is obtained from thermal energy in a plant arranged for introduction of solar energy, available intermittently, by reflecting and concentrating solar radiation to directly heat a flow medium such as the exhaust gas from a combustion turbine directed into a steam generating boiler/evaporator. Steam generators and staged turbines recover and extract energy optimally at particular temperature, pressure and flow parameters in a closed thermodynamic cycle. Solar energy that is available intermittently is injected into the cycle to elevate the energy of the flow medium, in particular to produce supercritical steam. A steam turbine optimized for expanding supercritical steam is deployed during periods of available solar radiation by a controllable clutch and other switching and valve arrangements. The exhaust from the supercritical steam turbine can be coupled to downstream staged turbines optimized for successively lower pressures and higher flow rates.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: Bechtel Power Corporation
    Inventor: Seyfettin C. Gülen
  • Publication number: 20150123623
    Abstract: An electric power generation plant has at least two synchronous machines and a source of mechanical power (torque), coupleable such that one or more of the synchronous machines can be operated as a generator while one or more is operated as a synchronous condenser. Field exciters, controlled shaft couplings, starters and switching sequences control starting, restarting and switching into simultaneous operation as generators, as condensers, or as one or more generators and condensers synchronously coupled to one another along a drive train. The disclosed configurations include modifications of existing generator installations such as decommissioned plants, such as by controllably coupling a second synchronous machine to a drive train, for use as a condenser for power factor control when needed or as an added source of generator capacity during times of high demand.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Applicant: Bechtel Power Corporation
    Inventors: Seyfettin C. Gülen, Mark S. Boulden
  • Patent number: 8963350
    Abstract: A steam turbine driven electric power plant with an electric generator is switchable into an islanding mode wherein a main steam turbine is shut down and a lower capacity industrial steam turbine runs the electric generator instead, to supply house power to the plant while decoupled from the power grid. This avoids operating the main steam turbine and/or its steam source at reduced ratings for which they are not optimized and keeps the plant ready for restarting. The main steam turbine, the electric machine and the industrial steam turbine are mechanically engaged or disengaged through an SSS clutch, torque converter and transmission. In another mode, the electric generator is decoupled mechanically and operated as a mechanically unloaded synchronous motor coupled to the power grid, namely as a synchronous condenser wherein phased over- or under-excitation of the motor field windings supplies reactive power to the grid.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: February 24, 2015
    Assignee: Bechtel Power Corporation
    Inventors: Mark S. Boulden, Seyfettin C. Gülen
  • Publication number: 20140331686
    Abstract: In a combined cycle gas turbine configuration having at least two power blocks, stack emissions (particularly nitrous oxides or NOx but also carbon monoxide CO and unburned hydrocarbons, UHC) are controlled concurrently with part load power output. In one power block a combined cycle power plant has a relatively large heavy-duty industrial gas turbine fired to about 1,700° C. at the turbine inlet leading to a first heat recovery system. A second power block with a smaller gas turbine has a second heat recovery system. A controller adjusts coupling of flue gas and steam paths from the second power block to the first power block to meet load demand in compliance with applicable emissions regulations.
    Type: Application
    Filed: December 30, 2013
    Publication date: November 13, 2014
    Applicant: Bechtel Power Corporation
    Inventor: Seyfettin C. Gülen
  • Patent number: 8535630
    Abstract: The present invention relates to a method for combined SO2 and CO2 removal from flue gas, which includes removing both CO2 and SO2 in a primary fractionation column and two polishing columns, the method comprising: a) hot flue as pretreatment, including flue gas SO3 removal by dry sorbent injection; b) compressing the treated hot flue gas by a multi-stage compressor; c) separation of CO2, SO2 and non-condensable gases; d) subjecting the CO2 and SO2 to separate polishing columns; and e) combining streams from the primary fractionation column and the two polishing columns for power recovery.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: September 17, 2013
    Assignee: Bechtel Power Corporation
    Inventors: Harvey Wen, Charles L. Kimtantas
  • Publication number: 20130129591
    Abstract: The present invention relates to a method for combined SO2 and CO2 removal from flue gas, which includes removing both CO2 and SO2 in a primary fractionation column and two polishing columns, the method comprising: a) hot flue as pretreatment, including flue gas SO3 removal by dry sorbent injection; b) compressing the treated hot flue gas by a multi-stage compressor; c) separation of CO2, SO2 and non-condensable gases; d) subjecting the CO2 and SO2 to separate polishing columns; and e) combining streams from the primary fractionation column and the two polishing columns for power recovery.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 23, 2013
    Applicant: Bechtel Power Corporation
    Inventor: Bechtel Power Corporation
  • Patent number: 8118895
    Abstract: A process of generating power utilizing a low level heat from a raw syngas produced in a quench gasifier is disclosed. The process includes a first stage that includes: producing raw syngas at the quench gasifier, making 150 psi saturated steam from the produced raw syngas, superheating the saturated steam, and using the superheated saturated steam in a low pressure steam turbine to generate power. The process includes a second stage that includes: providing the raw syngas and a process condensate stream to a thermal fluid vaporizer to vaporize an organic thermal fluid, and using the vaporized organic thermal fluid in an expander turbine to generate power via an organic Rankine cycle.
    Type: Grant
    Filed: March 29, 2008
    Date of Patent: February 21, 2012
    Assignee: Bechtel Power Corporation
    Inventors: Harvey Wen, Rattan K. Tawney
  • Patent number: 8080089
    Abstract: A method of treating gas, such as flue gas, is provided. Flue gas is received into a vessel. The flue gas in the vessel is cooled by at least 17 degrees F. to a temperature of 120 F or lower. Also in the vessel, SOx compounds are removed such that the concentration of SOx remaining in the flue gas is between 0 ppmv and 10 ppmv. After the flue gas is cooler and SOx compounds are removed in the vessel, the flue gas is transmitted to a flue gas carbon dioxide scrubbing unit.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: December 20, 2011
    Assignee: Bechtel Power Corporation
    Inventors: Harvey W. Wen, Charles L. Kimtantas
  • Publication number: 20110114819
    Abstract: Systems and methods for constructing composite wall structures are described in which opposing faceplates are provided that define a transverse void. A plurality of through connector assemblies, which span the transverse void between the faceplates, are attached with the opposing faceplate. A connecting mechanism is applied to the through connector assemblies from an outside of at least one of the faceplates and attaches with portions of the through connector assemblies in the transverse void. The transverse void may be filled with a fill material after attaching the opposing faceplates with the plurality of through connector assemblies.
    Type: Application
    Filed: November 14, 2009
    Publication date: May 19, 2011
    Applicant: Bechtel Power Corporation
    Inventor: Sanjeev Malushte
  • Patent number: 4718236
    Abstract: Improved apparatus and method in which brine of the geothermal and geopressured types is directed into one or more flash-crystallizer-separator units from a geothermal well. Such brine is separated into a gaseous fraction, a liquid fraction and a solids fraction. The gaseous fraction is used to provide useful work, such as driving a turbine, while the liquid and solids fractions are treated to remove the mineral values therefrom. The liquid fraction, following the mineral recovery therefrom, is directed back into the earth through an injection well. An important aspect of the invention is the injection of chemicals into one or more of the process vessels of the apparatus of the present invention. This causes additional mineral growth, such as the growth of heavy metal sulfide, in the brine. This is achieved by injecting sulfide ions into the brine, preferably in the form of sodium sulfide. The resulting brine slurry formed in the vessels can be sent to a thickener and then to a filter press for dewatering.
    Type: Grant
    Filed: December 12, 1985
    Date of Patent: January 12, 1988
    Assignee: Bechtel Power Corporation
    Inventors: Leon Awerbuch, Victor Van der Mast, David P. McGrath
  • Patent number: 4704050
    Abstract: A riser system having at least one riser with a J-shaped configuration for transporting hydrocarbon fluids from a subsea manifold or wellheads to a surface vessel. The riser has a horizontal section, an upright section, and a sag bend section interconnecting the horizontal and upright sections. The horizontal section is connected at one end to the subsea manifold and extends along and in frictional engagement with the seabed away from the manifold. The upright section has a vertical end part coupled to the surface vessel. The vessel can remain in position with dynamic thrusters or mooring lines, and the vessel remains on station applying horizontal pull to the riser while heading into the prevailing sea and as hydrocarbon fluids are transported from the manifold through the riser to the surface vessel. The horizontal pull on the riser due to the surface vessel is taken up by friction forces between the horizontal section of the riser and the seabed.
    Type: Grant
    Filed: January 16, 1984
    Date of Patent: November 3, 1987
    Assignee: Bechtel Power Corporation
    Inventor: Norman R. Wallace
  • Patent number: 4431290
    Abstract: A short-range hand-held photogrammetry system consists of two cameras placed in rigidly fixed photographic positions at the remote ends of a hollow bar. The hollow bar mounting the cameras encloses a wiring harness between the cameras, has attached conventional solenoid actuated shutter closing devices and mounts two downwardly protruding handles for hand holding of the bar and attached cameras. At least one flash unit is wired in series serially through each shutter mechanism of each camera. Both shutters are normally closed and opened for each exposure. These shutters when opened for exposure each close a normally open flash circuit switch. The series connection of the flash actuator requires that both shutters must be opened at the same time for the flash to fire, thus freezing in the same instant of time the pair of stereo photographs, one photograph by each camera. Under each lens of each camera is placed a beam projector that is activated by a pushbutton switch on the back of the bar.
    Type: Grant
    Filed: April 12, 1982
    Date of Patent: February 14, 1984
    Assignee: Bechtel Power Corporation
    Inventor: John H. Kennedy