Patents Assigned to BEI Sensors & Systems Company, Inc.
  • Patent number: 9803997
    Abstract: A sensor system determines an absolute angular position of a to-be-sensed rotating member. The sensor system may include a rotor with a first magnet coupled to the rotor and a shaft having threads thereon. The sensor system may further include a sleeve with a second magnet and threads complementary to the threads of a shaft. The sleeve may be configured to travel axially along the shaft as a function of rotation of the rotor. The sensor system may also include a first transducer configured to sense orientation of the first magnet and at least one second transducer configured to sense a location of the second magnet along the shaft. Through use of the sensor system, an absolute number of turns and, consequently absolute angular position, of the rotating member can be determined.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: October 31, 2017
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventor: Rene Putinier
  • Patent number: 9719168
    Abstract: Disclosed are devices, materials, systems, and methods, including a device that includes one or more structural components, at least one of the one or more structural components comprising substantially HfO2—TiO2 material. Also disclosed is a hemispherical resonator that includes a hemisphere including one or more structural components with at least one of the one or more structural components comprising substantially HfO2—TiO2 material, a forcer electrode configured to apply an electrical force on the hemisphere to cause the hemisphere to oscillate, and one or more sensor electrodes disposed in proximity to the hemisphere and configured to sense an orientation of a vibration pattern of the hemispherical resonator gyroscope.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: August 1, 2017
    Assignee: BEI SENSORS & SYSTEMS COMPANY, INC.
    Inventor: Chris Painter
  • Publication number: 20160032449
    Abstract: Disclosed are devices, materials, systems, and methods, including a device that includes one or more structural components, at least one of the one or more structural components comprising substantially HfO2—TiO2 material. Also disclosed is a hemispherical resonator that includes a hemisphere including one or more structural components with at least one of the one or more structural components comprising substantially HfO2—TiO2 material, a forcer electrode configured to apply an electrical force on the hemisphere to cause the hemisphere to oscillate, and one or more sensor electrodes disposed in proximity to the hemisphere and configured to sense an orientation of a vibration pattern of the hemispherical resonator gyroscope.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Applicant: BEI Sensors & Systems Company, Inc.
    Inventor: Chris Painter
  • Patent number: 9188442
    Abstract: Disclosed are devices, materials, systems, and methods, including a device that includes one or more structural components, at least one of the one or more structural components comprising substantially HfO2—TiO2 material. Also disclosed is a hemispherical resonator that includes a hemisphere including one or more structural components with at least one of the one or more structural components comprising substantially HfO2—TiO2 material, a forcer electrode configured to apply an electrical force on the hemisphere to cause the hemisphere to oscillate, and one or more sensor electrodes disposed in proximity to the hemisphere and configured to sense an orientation of a vibration pattern of the hemispherical resonator gyroscope.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: November 17, 2015
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventor: Chris Painter
  • Publication number: 20150028865
    Abstract: Disclosed are methods, systems, devices, sensors, and other implementations, including a programmable sensor system that includes a variable voltage source (“VVS”) to receive an external input voltage and provide a variable output voltage from the input voltage, the VVS configured to be controlled to adjust behavior of the VVS, and a programmable sensor coupled to an output of the VVS to receive the variable output voltage. The sensor is configured to be programmed when a programming voltage of at least a predetermined level is provided by the VVS to power the sensor, and to perform regular sensor operations when regular-operation voltage is provided by the VVS to power the sensor. The sensor system further includes a controller to cause controllable adjustment of the VVS to provide the programming voltage for a predetermined period of time to power the sensor so as to cause the sensor to be programmed.
    Type: Application
    Filed: February 28, 2012
    Publication date: January 29, 2015
    Applicant: BEI SENSORS & SYSTEMS COMPANY, INC.
    Inventor: Rene Putinier
  • Patent number: 8363881
    Abstract: Disclosed is a linear actuator which includes a core, a coil, a magnet assembly, and a housing. The coil that is shaped to be positioned about the core for movement along a longitudinal axis of the core. The housing is supported by core flanges and positioned about the coil and the core. The magnet assembly includes magnets of the same polarity facing the coil and shaped to be positioned inside or outside of the coil, and supported by the core or by the housing, respectively. The core includes first and second portions, each having an end face, and the first and second portions are positioned along the longitudinal axis so that the end faces oppose each other and are separated by a gap. A cavity is formed in each of the end faces along the longitudinal axis.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: January 29, 2013
    Assignee: BEI Sensors and Systems Company, Inc.
    Inventor: Mikhail Godkin
  • Patent number: 8193885
    Abstract: “Electromagnetic spring” characteristics can be obtained in a voice coil actuator by deliberately selecting some or all of geometry, location of the housing, field assembly and coils, and/or magnitude and direction of the current applied to the coils; for example, predetermined bidirectional spring characteristics can be provided by appropriate deliberate selection of the relative dimensions of the housing and field assembly, and the spring characteristics can be further altered though the addition of structures, such as a radially magnetized magnet, or a soft magnetic extension, positioned at an end of the housing, and/or by applying current of a selected magnitude and direction to the coil assembly.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 5, 2012
    Assignee: BEI Sensors And Systems Company, Inc.
    Inventor: Mikhail Godkin
  • Patent number: 7362012
    Abstract: A linear brushless DC motor is disclosed which provides reduced detent force by way of a stack that features end teeth that are formed to be wedge shaped, and which has a length in the direction of motion which is approximately equal to (Np+½) × pole pitch, where Np equals the number of poles covered by the armature of the brushless DC motor, and the pole pitch equals a distance between centers of two adjacent magnets of opposite polarity in a field assembly of the linear brushless DC motor.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: April 22, 2008
    Assignee: BEI Sensors and Systems Company, Inc.
    Inventor: Mikhail Godkin
  • Patent number: 7250754
    Abstract: Disclosed are a magnetic field assembly and method of configuring the same for use in position sensors of the type, which include a magnetic field sensor. First and second magnets in the field assembly are positioned on a surface of a magnetic plate (return path) and separated from one another by a separation distance. The first magnet has a magnetic axis substantially transverse to the surface of the magnetic plate, and the first magnet has a polarity opposite a polarity of the second magnet. The thicknesses of the first and second magnets are selectively varied along a stroke direction, and the separation distance is selected along with a gap length distance between the magnetic sensor and the field assembly, so that a predetermined flux density versus stroke characteristic can be provided for the position sensor.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: July 31, 2007
    Assignee: Bei Sensors and Systems Company, Inc.
    Inventor: Mikhail Godkin
  • Patent number: 7166996
    Abstract: A magnetic field assembly and method of configuring the same for use in position sensors of the type which include a magnetic field sensor. First and second magnets in the field assembly are positioned on a surface of a magnetic plate (return path) and separated from one another by a separation distance. The first magnet has a magnetic axis substantially transverse to the surface of the magnetic plate, and the first magnet has a polarity opposite a polarity of the second magnet. The thicknesses of the first and second magnets are selectively varied along a stroke direction, and the separation distance is selected along with a gap length distance between the magnetic sensor and the field assembly, so that a predetermined flux density versus stroke characteristic can be provided for the position sensor.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: January 23, 2007
    Assignee: Bei Sensors and Systems Company, Inc.
    Inventor: Mikhail Godkin
  • Patent number: 7015832
    Abstract: A digital incremental encoder for generating an output signal indicative of an angular position, a direction of rotation, and a speed of rotation of a shaft. A counter receives a PWM signal indicative of the angular position of the shaft and a clock signal from an angular position sensor, and generates a multi-bit output. A latch latches the multi-bit output, a first bit and a second bit of which are used to generate the output signals that include the first bit. The first bit and the second bit may be XOR'd together to generate an XOR output included in the output signals. A direction of rotation may be derived from a quadrature phase relationship between the first bit and the XOR output. The angular position sensor may be an NCAPS or MT-NCAPS. A linear position sensor may be used instead of an angular position sensor to generate the PWM signal.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: March 21, 2006
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventors: Asad M. Madni, Jim B. Vuong, Philip Vuong
  • Patent number: 6985018
    Abstract: A multi-turn pulse width modulation (PWM) generator for generating a PWM output corresponding to multiple 360 degree turns. A counter receives a reference signal, and counts a number of cycles of the reference signal to generate a binary output corresponding to the number of cycles counted. A frequency divider receives a sensor output signal, and divides the frequency of the sensor output signal by the number of turns in the multiple turns to generate a frequency divided signal. The sensor output signal has substantially the same frequency as the reference signal, but can be offset in phase from the reference signal. A demultiplexer receives the binary output, and generates a plurality of turn indicator signals, each corresponding to one of the multiple turns. A multiplexer receives the turn indicator signals and a mechanical turn indication signal, and selects one of the turn indicator signals that corresponds to the mechanical turn indication signal.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: January 10, 2006
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventors: Asad M. Madni, Jim B. Vuong, Philip Vuong
  • Patent number: 6955097
    Abstract: A radial movement capacitive torque sensor includes a pair of concentric capacitor plate rings lying in a common plane, a capacitor plate ring facing the pair of concentric capacitor plate rings, and a paddle assembly disposed between the pair of concentric capacitor plate rings and the capacitor plate ring. The paddle assembly includes a first rotor having a circular opening and having at least one pair of spaced apart bearings mounted thereon, a second rotor having a circular opening and having at least one pivot point located thereon, and at least one paddle having a dielectric head, a curved neck and a body. The curved neck is disposed between a corresponding one of said at least one pair of spaced bearings, and the body is pivotally coupled to a corresponding one of said at least one pivot point.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: October 18, 2005
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventors: Asad M. Madni, Jim B. Vuong, Robert K. Hansen
  • Patent number: 6831538
    Abstract: Disclosed is a linear actuator, controllable as a spring, having a field assembly and a coil assembly positioned for interaction with and movement relative to the field assembly. The field assembly has a soft magnetic housing having an axis, axially magnetized cylindrical magnets and soft magnetic pole pieces which form a stack of alternating cylindrical magnets and pole pieces positioned along the axis. The coil assembly includes a coil base having coil cavities, coils supported in the coil cavity, and an axially magnetized permanent magnet positioned on the coil base so that the axially magnetized permanent magnet is positioned to travel along the axis of the soft magnetic housing. A repulsion force is generated between the coil assembly and the field assembly when the coil assembly is de-energized, and the repulsion force is modified when the coil assembly is energized.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: December 14, 2004
    Assignee: BEI Sensors and Systems Company, Inc.
    Inventor: Mikhail Godkin
  • Patent number: 6772646
    Abstract: A differential capacitive torque sensor for a continuously rotating shaft such as the steering column of an automobile provides an apertured metal cage shielding a dielectric rotor. They are respectively mounted on opposite sides of a split shaft connected by a torsion bar. The relative rotation of the apertured conductive plates and the rotor change the overall differential capacitance of the system to proportionally indicate clockwise or counter-clockwise torque.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: August 10, 2004
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventors: Asad M. Madni, Robert K. Hansen, Jim B. Vuong
  • Patent number: 6564654
    Abstract: A vertical movement capacitive torque sensor for a rotating shaft such as the steering column of an automobile includes dielectric vanes interposed between capacitor plates which are moveable proportional to the angular displacement of two shaft portions which are linked by a torsion bar or concentric inner and outer shaft portions, the vanes move in a radial direction perpendicular to the shaft axis. Concentric capacitor rings are provided so that a bridge circuit can easily indicate differential capacitance which is proportional to clockwise or counter-clockwise torque.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 20, 2003
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventors: Asad M. Madni, Jim B. Vuong, Mitchell London
  • Patent number: 6545621
    Abstract: A digitally programmable pulse-width-modulation (PWM) converter changes a 0% to 100% duty cycle input signal to any desired start and stop duty cycle range; for example, 5% to 95%. This is achieved by the difference in start and stop duty cycles forming a ratio which determines a pair of clock frequencies for modifying the PWM signal to provide the new start and stop duty cycle parameters.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: April 8, 2003
    Assignee: BEI Sensors & Systems Company, Inc,.
    Inventors: Asad M. Madni, Jim B. Vuong, Philip Vuong
  • Patent number: 6520031
    Abstract: A non contacting angular differential displacement torque sensor utilizes a split shaft with a connecting torsion bar with a pair of receive disks each with an intervening coupler disk carrying a conductive attenuating pattern where the inductive coupling between transmit and receive disks is individually attenuated in accordance with the angular position of the shaft on which the disks are mounted. The pair of receive disks which receive signals from a common transmitter have their angular difference taken and this is the actual torque on the shaft.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: February 18, 2003
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventors: Asad M. Madni, Jim B. Vuong, Robert K. Hansen
  • Patent number: 6448759
    Abstract: A non-contact linear position center has juxtaposed transmit and receive sections with a coupler or slider section interposed therebetween carrying a symmetrical attenuating conductive pattern. The inductive coupling of coils on the transmitter and receive sections is attenuated in accordance with the linear position of the pattern on the coupler. A unique sinusoidal signal is generated whose phase is indicative of the linear position of the coupler.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: September 10, 2002
    Assignee: BEI Sensors and Systems Company, Inc.
    Inventors: Asad M. Madni, Jim B. Vuong
  • Patent number: 6304076
    Abstract: A non-contact angular position sensor has juxtaposed transmit and receive disks with a coupler disk, carrying a conductive attenuating pattern interposed therebetween. A pattern of inductive coils, which completely encircle both the transmit and receive disks have their inductive coupling individually attenuated in accordance with the angular position of the symmetrical conductive pattern on the intermediate coupling disk. The transmit disk is driven by a signal source which when received and demodulated by the receive coils and summed together provides a unique sinusoidal signal whose phase is indicative of the angular position of the intermediate coupler. The conductive pattern on the coupler is designed to provide a linear output.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: October 16, 2001
    Assignee: BEI Sensors & Systems Company, Inc.
    Inventors: Asad M. Madni, Jim B. Vuong