Patents Assigned to BEIJING U-PRECISION TECH CO., LTD.
  • Patent number: 11940349
    Abstract: Disclosed is a plane grating calibration system, comprising an optical subsystem, a frame, first vibration isolator, a vacuum chuck, a workpiece stage, second vibration isolator, a base platform and a controller; the optical subsystem is mounted on the frame, and the frame is isolated from vibration by the first vibration isolator; the vacuum chuck is rotatably mounted on the workpiece stage, the workpiece stage is positioned on the base platform, and the base platform is isolated from vibration by the second vibration isolator. A displacement interferometer is integrated into the optical subsystem, and the entire optical subsystem adopts a method of sharing a light source, thereby avoiding the problems of low wavelength precision and poor coherence of separate light sources.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: March 26, 2024
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Leijie Wang, Ming Zhang, Yu Zhu, Jiankun Hao, Xin Li, Rong Cheng, Kaiming Yang, Jinchun Hu
  • Patent number: 11703361
    Abstract: A five-degree-of-freedom heterodyne grating interferometry system comprises: a single-frequency laser for emitting single-frequency laser light, the single-frequency laser light can be split into a reference light beam and a measurement light beam; an interferometer lens set and a measurement grating for converting the reference light and the measurement light into a reference interference signal and a measurement interference signal; and multiple optical fiber bundles respectively receiving the measurement interference signal and the reference interference signal, wherein each optical fiber bundle has multiple multi-mode optical fibers respectively receiving interference signals at different positions on the same plane. The system is not over-sensitive to the environment, is small and light, and is easy to arrange.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: July 18, 2023
    Assignees: BEIJING U-PRECISION TECH CO., LTD., TSINGHUA UNIVERSITY
    Inventors: Ming Zhang, Yu Zhu, Fuzhong Yang, Leijie Wang, Rong Cheng, Xin Li, Weinan Ye, Jinchun Hu
  • Patent number: 11307018
    Abstract: A two-degree-of-freedom heterodyne grating interferometry measurement system, comprising: a single-frequency laser device for emitting a single-frequency laser, and the single-frequency laser can be split into a beam of reference light and a beam of measurement light; an interferometer mirror group and a measurement grating for forming a reference interference signal and a measurement interference signal from the reference light and the measurement light; and a receiving optical fiber for receiving the reference interference signal and the measurement interference signal, wherein a core diameter of the receiving optical fiber is smaller than a width of an interference fringe of the reference interference signal and the measurement interference signal, so that the receiving optical fiber receives a part of the reference interference signal and the measurement interference signal.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: April 19, 2022
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Yu Zhu, Ming Zhang, Leijie Wang, Fuzhong Yang, Rong Cheng, Xin Li, Weinan Ye, Jinchun Hu
  • Patent number: 10597172
    Abstract: Disclosed is a magnetic-fluid momentum sphere, which is used for satellite attitude adjustment. The magnetic-fluid momentum sphere comprises stators and a spherical shell. The stators are classified into three groups, axes of the three groups of stators are orthogonal to each other, each group comprises two stators arranged symmetrically about the center of the spherical shell, and the inner surfaces of the stators are spherical surfaces. The spherical shell is formed by combining two hemispherical shells, the material of the spherical shell is a non-ferromagnetic material, the inner surfaces of the stators closely adhere to the outer surface of the spherical shell, there is no relative movement between the spherical shell and the inner surfaces of the stators, and the spherical shell is filled with magnetic fluid. The magnetic-fluid momentum sphere achieves a small size and mass, low costs, and small coupling among the axes.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: March 24, 2020
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Yu Zhu, Anlin Chen, Ming Zhang, Kaiming Yang, Rong Cheng
  • Patent number: 10532832
    Abstract: A magnetic levitation reaction sphere includes a spherical-housing-shaped rotor and three groups of stators. Each group includes two stators using the sphere center of the rotor as a symcenter. Axes of the three groups are mutually orthogonal. Each stator comprises a stator core and a coil array. An air gap is reserved between an inner surface of each stator core and the outer surface of the rotor. Through grooves are radially formed in the stator cores. The coil arrays are disc-type motor stator windings. Two effective sides of each coil in each coil array are respectively placed in two through grooves of the corresponding stator core. The magnetic levitation reaction sphere has low cost; levitation and rotation driving are integrated; the magnetic levitation reaction sphere has a simple and compact structure, a small size and a low mass, and relates to inherent stable levitation; and the levitation control is simple.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: January 14, 2020
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Ming Zhang, Yu Zhu, Anlin Chen, Kaiming Yang, Rong Cheng, Feng Liu, Jinchun Hu, Chuxiong Hu, Dengfeng Xu, Haihua Mu
  • Patent number: 9995569
    Abstract: A six-degree-of-freedom displacement measurement method for an exposure region on a wafer stage, the wafer stage comprises a coil array and a movable platform. A planar grating is fixed below a permanent magnet array of the movable platform. A reading head is fixed in a gap of the coil array. A measurement region is formed on the planar grating by an incident measurement light beam of the reading head. The reading head measures the six-degree-of-freedom displacement of the measurement region, so that the six-degree-of-freedom displacement of the exposure region is obtained through calculation. In the method, the six-degree-of-freedom displacement of the exposure region at any time is measured; the measurement complexity is reduced and the measurement precision is improved, and especially, the six-degree-of-freedom displacement of the exposure region can be precisely measured at any time even if the movable platform has high flexibility.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: June 12, 2018
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Yu Zhu, Ming Zhang, Anlin Chen, Rong Cheng, Kaiming Yang, Feng Liu, Yujing Song, Fan Zhi, Jinchun Hu, Dengfeng Xu, Haihua Mu, Chuxiong Hu
  • Patent number: 9904183
    Abstract: A coarse motion and fine motion integrated reticle stage driven by a planar motor comprises a movable platform (100) of the reticle stage, a balance mass (200), a drive motor, a mask plate (101, 102), a base (001), a vibration isolation system (500), and a measuring system, wherein, the vibration isolation system is located between the balance mass and the base, and the mask plate is mounted on the movable platform. The drive motor of the movable platform is a moving-iron type planar motor (300). The reticle stage can lower the design complexity of the drive motor of the movable platform. Compared with a linear motor, the planar motor can provide push forces in more directions, the number of motors is reduced, the structure of the movable platform is more compact, the inherent frequency and the control bandwidth of the movable platform are improved, and thus control precision is improved.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: February 27, 2018
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Yu Zhu, Ming Zhang, Fan Zhi, Zhao Liu, Rong Cheng, Kaiming Yang, Li Zhang, Huichao Qin, Yanpo Zhao, Li Tian, Weinan Ye, Jin Zhang, Wensheng Yin, Haihua Mu, Jinchun Hu
  • Patent number: 9791789
    Abstract: A magnetically suspended coarse motion and fine motion integrated reticle stage driven by a planar motor comprises a movable platform (100), a balance mass (200), a drive motor, a mask plate (101), a base (001), a vibration isolation system (500), and a measuring system, wherein, the vibration isolation system is located between the balance mass and the base, and the mask plate is mounted on the movable platform. The drive motor of the movable platform is a moving-iron type planar motor (300). The reticle stage can lower the design complexity of the drive motor of the movable platform. Compared with a linear motor, the planar motor can provide push forces in more directions, the number of motors is reduced, the structure of the movable platform is more compact, the inherent frequency and the control bandwidth of the movable platform are improved, and thus control precision is improved.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: October 17, 2017
    Assignees: TSINGHUA UNIVERSITY, BEIJING U-PRECISION TECH CO., LTD.
    Inventors: Ming Zhang, Yu Zhu, Fan Zhi, Rong Cheng, Kaiming Yang, Zhao Liu, Li Zhang, Huichao Qin, Yanpo Zhao, Li Tian, Weinan Ye, Jin Zhang, Wensheng Yin, Haihua Mu, Jinchun Hu