Abstract: A polymerization reactor for creating drag-reducing polymer having a reservoir and at least one heat exchanger plate in fluid communication with a coolant source, wherein each heat exchanger plate may be disposed on a lid. The heat exchanger plates are treated and/or covered to provide that the exchanger plates can be readily disengaged from the drag-reducing polymer. The polymerization reactors of the present invention permit large amounts of polymer to be formed in each reactor batch. Preferably, polymers are formed in the polymerization reactor by bulk polymerization. Methods for forming drag-reducing polymers are also disclosed.
Abstract: A polymerization reactor having at least three side wall surfaces and a bottom wall surface forming a reservoir and at least one heat exchanger plate in fluid communication with a coolant source, wherein each of the at least one heat exchanger plate is disposed on a lid. The polymerization reactors of the present invention permit large amounts of polymer to be formed in each reactor batch. Preferably, polymers are formed in the polymerization reactor by bulk polymerization. Methods for forming polymers is also disclosed.
Abstract: The present invention relates to a drag reducing agent, composition, compound, product, process and method of use for use in petroleum pipelines and the like. A preferred embodiment of the present invention provides a cryogenically-ground polyalphaolefin polymer at 15-25 wt. % of the commercial product formulation. The bulking agents comprise ethylene bis-stearamide alone or in combination with other polyethylene and/or polypropylene polymers at 2.0-5.0 wt. % of the commercial product formulation. In addition, diisobutyl ketone 20-60 wt. % of the commercial product formulation and propylene carbonate 2.8-8.4 wt. % of the commercial product formulation are used.
Abstract: A polymerization reactor having at least three side wall surfaces and a bottom wall surface forming a reservoir and at least one heat exchanger plate in fluid communication with a coolant source, wherein each of the at least one heat exchanger plate is disposed on a lid. The polymerization reactors of the present invention permit large amounts of polymer to be formed in each reactor batch. Preferably, polymers are formed in the polymerization reactor by bulk polymerization. Methods for forming polymers is also disclosed.