Patents Assigned to Brain Corporation
  • Patent number: 10194163
    Abstract: A data processing apparatus may use a video encoder in order to extract motion information from streaming video in real time. Output of the video encoder may be parsed in order to extract motion information associated with one or more objects within the video stream. Motion information may be utilized by e.g., an adaptive controller in order to detect one or more objects salient to a given task. The controller may be configured to determine a control signal associated with the given task. The control signal determination may be configured based on a characteristic of an object detected using motion information extracted from the encoded output. The control signal may be provided to a robotic device causing the device to execute the task. The use of dedicated hardware video encoder output may reduce energy consumption associated with execution of the task and/or extend autonomy of the robotic device.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: January 29, 2019
    Assignee: Brain Corporation
    Inventor: Micah Richert
  • Patent number: 10184787
    Abstract: Data streams from multiple image sensors may be combined in order to form, for example, an interleaved video stream, which can be used to determine distance to an object. The video stream may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: January 22, 2019
    Assignee: Brain Corporation
    Inventors: Micah Richert, Marius Buibas, Vadim Polonichko
  • Patent number: 10166675
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 1, 2019
    Assignee: Brain Corporation
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Patent number: 10155310
    Abstract: Apparatus and methods for training and operating of robotic devices. Robotic controller may comprise a predictor apparatus configured to generate motor control output. The predictor may be operable in accordance with a learning process based on a teaching signal comprising the control output. An adaptive controller block may provide control output that may be combined with the predicted control output. The predictor learning process may be configured to learn the combined control signal. Predictor training may comprise a plurality of trials. During initial trial, the control output may be capable of causing a robot to perform a task. During intermediate trials, individual contributions from the controller block and the predictor may be inadequate for the task. Upon learning, the control knowledge may be transferred to the predictor so as to enable task execution in absence of subsequent inputs from the controller. Control output and/or predictor output may comprise multi-channel signals.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: December 18, 2018
    Assignee: Brain Corporation
    Inventors: Eugene Izhikevich, Oleg Sinyavskiy, Jean-Baptiste Passot
  • Patent number: 10131052
    Abstract: An apparatus and methods for training and/or operating a robotic device to perform a target task autonomously. The target task execution may be configured based on analysis of sensory context by the robot. Target action may comprise execution of two or more mutually exclusive actions for a given context. The robotic device may be operable in accordance with a persistent switching process. For a given sensor input, the switching process may be trained to select one of two or more alternative actions based on a prior action being executed. Switching process operation may comprise assigning priorities to the available tasks based on the sensory context; the task priorities may be modified during training based on input from a trainer. The predicted task priorities may be filtered by a “persistent winner-take-all process configured to switch from a current task to another task based on the priority breaching a switching threshold.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: November 20, 2018
    Assignee: Brain Corporation
    Inventors: Borja Ibarz Gabardos, Oleg Sinyavskiy
  • Patent number: 10105841
    Abstract: Apparatus and methods for training and operating of robotic devices. Robotic controller may comprise a plurality of predictor apparatus configured to generate motor control output. One predictor may be operable in accordance with a pre-configured process; another predictor may be operable in accordance with a learning process configured based on a teaching signal. An adaptive combiner component may be configured to determine a combined control output controller block may provide control output that may be combined with the predicted control output. The pre-programmed predictor may be configured to operate a robot to perform a task. Based on detection of a context, the controller may adaptively switch to use control output of the learning process to perform the given or another task. User feedback may be utilized during learning.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: October 23, 2018
    Assignee: Brain Corporation
    Inventors: Botond Szatmary, Oyvind Grotmol, Eugene Izhikevich, Oleg Sinyavskiy
  • Patent number: 10057593
    Abstract: Frame sequences from multiple image sensors may be combined in order to form, for example, an interleaved frame sequence. Individual frames of the combined sequence may be configured a by combination (e.g., concatenation) of frames from one or more source sequences. The interleaved/concatenated frame sequence may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: August 21, 2018
    Assignee: BRAIN CORPORATION
    Inventor: Micah Richert
  • Patent number: 10055850
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: August 21, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 10032280
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: July 24, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 10016896
    Abstract: Systems and methods for detection of people are disclosed. In some exemplary implementations, a robot can have a plurality of sensor units. Each sensor unit can be configured to generate sensor data indicative of a portion of a moving body at a plurality of times. Based on at least the sensor data, the robot can determine that the moving body is a person by at least detecting the motion of the moving body and determining that the moving body has characteristics of a person. The robot can then perform an action based at least in part on the determination that the moving body is a person.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: July 10, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Oleg Sinyavskiy, Borja Ibarz Gabardos, Jean-Baptiste Passot
  • Patent number: 10001780
    Abstract: Systems and methods for dynamic route planning in autonomous navigation are disclosed. In some exemplary implementations, a robot can have one or more sensors configured to collect data about an environment including detected points on one or more objects in the environment. The robot can then plan a route in the environment, where the route can comprise one or more route poses. The route poses can include a footprint indicative at least in part of a pose, size, and shape of the robot along the route. Each route pose can have a plurality of points therein. Based on forces exerted on the points of each route pose by other route poses, objects in the environment, and others, each route pose can reposition. Based at least in part on interpolation performed on the route poses (some of which may be repositioned), the robot can dynamically route.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: June 19, 2018
    Assignee: Brain Corporation
    Inventors: Borja Ibarz Gabardos, Jean-Baptiste Passot
  • Patent number: 9987752
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: June 5, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Patent number: 9987743
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 5, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot
  • Patent number: 9950426
    Abstract: Robotic devices may be trained by a user guiding the robot along target action trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control signal based on one or more of the user guidance, sensory input, performance measure, and/or other information. Training may comprise a plurality of trials, wherein for a given context the user and the robot's controller may collaborate to develop an association between the context and the target action. Upon developing the association, the adaptive controller may be capable of generating the control signal and/or an action indication prior and/or in lieu of user input. The predictive control functionality attained by the controller may enable autonomous operation of robotic devices obviating a need for continuing user guidance.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: April 24, 2018
    Assignee: Brain Corporation
    Inventors: Patryk Laurent, Jean-Baptiste Passot, Oleg Sinyavskiy, Filip Ponulak, Borja Ibarz Gabardos, Eugene Izhikevich
  • Patent number: 9939253
    Abstract: Data streams from multiple image sensors may be combined in order to form, for example, an interleaved video stream, which can be used to determine distance to an object. The video stream may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 10, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Micah Richert, Marius Buibas, Vadim Polonichko
  • Patent number: 9902062
    Abstract: An apparatus and methods for training and/or operating a robotic device to follow a trajectory. A robotic vehicle may utilize a camera and stores the sequence of images of a visual scene seen when following a trajectory during training in an ordered buffer. Motor commands associated with a given image may be stored. During autonomous operation, an acquired image may be compared with one or more images from the training buffer in order to determine the most likely match. An evaluation may be performed in order to determine if the image may correspond to a shifted (e.g., left/right) version of a stored image as previously observed. If the new image is shifted left, right turn command may be issued. If the new image is shifted right then left turn command may be issued.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: February 27, 2018
    Assignee: Brain Corporation
    Inventors: Oyvind Grotmol, Oleg Sinyavskiy
  • Patent number: 9873196
    Abstract: Apparatus and methods for navigation of a robotic device configured to operate in an environment comprising objects and/or persons. Location of objects and/or persons may change prior and/or during operation of the robot. In one embodiment, a bistatic sensor comprises a transmitter and a receiver. The receiver may be spatially displaced from the transmitter. The transmitter may project a pattern on a surface in the direction of robot movement. In one variant, the pattern comprises an encoded portion and an information portion. The information portion may be used to communicate information related to robot movement to one or more persons. The encoded portion may be used to determine presence of one or more object in the path of the robot. The receiver may sample a reflected pattern and compare it with the transmitted pattern. Based on a similarity measure breaching a threshold, indication of object present may be produced.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: January 23, 2018
    Assignee: Brain Corporation
    Inventors: Botond Szatmary, Micah Richert
  • Patent number: 9870617
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: January 16, 2018
    Assignee: Brain Corporation
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 9862092
    Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 9, 2018
    Assignee: Brain Corporation
    Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
  • Patent number: 9860077
    Abstract: Computerized appliances may be operated by users remotely. A learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: January 2, 2018
    Assignee: Brain Corporation
    Inventors: Patryk Laurent, Csaba Petre, Eugene M. Izhikevich