Patents Assigned to Cabot Microelectronics Corporation
  • Patent number: 9303187
    Abstract: The present invention provides a chemical mechanical polishing method for polishing a substrate comprising silicon dioxide, silicon nitride, and polysilicon. The method comprises abrading a surface of the substrate with a CMP composition to remove at least some silicon dioxide, silicon nitride and polysilicon therefrom. The CMP composition comprising a particulate ceria abrasive suspended in an aqueous carrier having a pH of about 3 to 9.5 and containing a cationic polymer; wherein the cationic polymer consists of a quaternary methacryloyloxyalkylammonium polymer.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: April 5, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Dimitry Dinega, Kevin Moeggenborg, William Ward, Daniel Mateja
  • Patent number: 9303188
    Abstract: A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier, a colloidal silica abrasive dispersed in the liquid carrier and having a permanent positive charge of at least 6 mV, and a polycationic amine compound in solution in the liquid carrier. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 5, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Jeffrey Dysard, Lin Fu, William Ward, Glenn Whitener
  • Patent number: 9279067
    Abstract: Disclosed are a chemical-mechanical polishing composition and a method of polishing a substrate. The polishing composition comprises wet-process ceria abrasive particles, (e.g., about 120 nm or less), at least one alcohol amine, at least one surfactant having at least one hydrophilic moiety and at least one hydrophobic moiety, the surfactant having a molecular weight of about 1000, and water, wherein the polishing composition has a pH of about 6. The polishing composition can be used, e.g., to polish any suitable substrate, such as a polysilicon wafer used in the semiconductor industry.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: March 8, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventor: Brian Reiss
  • Patent number: 9281210
    Abstract: Disclosed are a chemical-mechanical polishing composition and a method of polishing a substrate. The polishing composition comprises low average particle size (e.g., 30 nm or less) wet-process ceria abrasive particles, at least one alcohol amine, and water, wherein said polishing composition has a pH of about 6. The polishing composition can be used, e.g., to polish any suitable substrate, such as a polysilicon wafer used in the semiconductor industry.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: March 8, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Brian Reiss, Jeffrey Dysard, Sairam Shekhar
  • Patent number: 9238754
    Abstract: A chemical mechanical polishing composition for polishing a substrate having a tungsten layer includes a water based liquid carrier, a colloidal silica abrasive dispersed in the liquid carrier and having a permanent positive charge of at least 6 mV, an amine compound in solution in the liquid carrier, and an iron containing accelerator. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: January 19, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Jeffrey Dysard, Lin Fu, William Ward, Glenn Whitener
  • Patent number: 9238753
    Abstract: The invention provides a chemical-mechanical polishing composition containing a ceria abrasive, one or more nonionic polymers, optionally one or more phosphonic acids, optionally one or more nitrogen-containing zwitterionic compounds, optionally one or more sulfonic acid copolymers, optionally one or more anionic copolymers, optionally one or more polymers comprising quaternary amines, optionally one or more compounds that adjust the pH of the polishing compositions, water, and optionally one or more additives. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 19, 2016
    Assignee: Cabot Microelectronics Corporation
    Inventors: Brian Reiss, Glenn Whitener
  • Patent number: 9165489
    Abstract: The invention provides a chemical-mechanical polishing composition containing a ceria abrasive and a polymer of formula I: wherein X1 and X2, Y1 and Y2, Z1 and Z2, R1, R2, R3, and R4, and m are as defined herein, and water, wherein the polishing composition has a pH of about 1 to about 4.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains silicon oxide, silicon nitride, and/or polysilicon.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: October 20, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Tina Li, Kevin Dockery, Renhe Jia, Jeffrey Dysard
  • Patent number: 9157010
    Abstract: A magnetorheological fluid for use in magnetorheological ultrasmooth polishing of a substrate surface, comprising an aqueous carrier vehicle; a first amount of magnetic particles having a average diameter between about 1 micrometer and about 2 micrometers; and a second amount of abrasive particles having an average diameter between about <1 nanometer and about 15 nanometers. The fluid may further comprise a chemical stabilizer. Preferably the size of the magnetic particles is 2 to 3 orders of magnitude greater than the size of the abrasive particles. Preferably, the magnetic particles are spherical and include carbonyl iron, and preferably, the abrasive particles are selected from the group consisting of aluminum oxide, zirconium oxide, cerium oxide, silica, boron carbide, silicon carbide, natural diamond, synthetic diamond, and combinations thereof.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 13, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: William Kordonski, Sergei Gorodkin, Eric Oswald
  • Patent number: 9156125
    Abstract: The invention provides a polishing pad that contains at least one light-transmitting region and optionally a polishing pad body. The light-transmitting region is composed of a material comprising (a) a polymeric resin and (b) at least one light-absorbing compound, and the light-transmitting region has a total light transmittance of about 25% or more at one or more wavelengths in a range of 250 nm to 395 nm.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 13, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventor: Abaneshwar Prasad
  • Patent number: 9127187
    Abstract: A chemical mechanical polishing composition includes a water based liquid carrier and first and second silica abrasives dispersed in the liquid carrier. The first silica abrasive is a colloidal silica abrasive having a permanent positive charge of at least 10 mV. The second silica abrasive has a neutral charge or a non-permanent positive charge. A method for chemical mechanical polishing a substrate including a tungsten layer includes contacting the substrate with the above described polishing composition, moving the polishing composition relative to the substrate, and abrading the substrate to remove a portion of the tungsten from the substrate and thereby polish the substrate.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: September 8, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Jeffrey Dysard
  • Patent number: 9129907
    Abstract: The present invention provides a chemical-mechanical polishing (CMP) composition suitable for polishing semiconductor materials. The composition has a pH of about 5 or less and comprises colloidal silica, at least one onium compound selected from the group consisting of a phosphonium salt, a sulfonium salt, and a combination thereof, and an aqueous carrier therefor; A CMP method for polishing a surface of a semiconductor material utilizing the composition is also disclosed.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: September 8, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Michael L. White, Zhan Chen
  • Patent number: 9074118
    Abstract: An aqueous chemical-mechanical polishing composition for polishing metal containing substrates comprising an abrasive particle consisting essentially of a primary particle modified with an aluminosilicate layer, and wherein the abrasive particle has a zeta potential measured at pH 2.3 of about ?5 mV to about ?100 mV. The composition can be used to polish the surface of a tungsten containing substrate.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: July 7, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Robert Vacassy, Renjie Zhou
  • Patent number: 9039914
    Abstract: The invention provides a chemical-mechanical polishing composition containing wet-process silica, an oxidizing agent that oxidizes nickel-phosphorous, a chelating agent, polyvinyl alcohol, and water. The invention also provides a method of chemically-mechanically polishing a substrate, especially a nickel-phosphorous substrate, by contacting a substrate with a polishing pad and the chemical-mechanical polishing composition, moving the polishing pad and the polishing composition relative to the substrate, and abrading at least a portion of the substrate to polish the substrate.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: May 26, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Selvaraj Palanisamy Chinnathambi, Haresh Siriwardane
  • Patent number: 9028572
    Abstract: The inventive method comprises chemically-mechanically polishing a substrate with an inventive polishing composition comprising a liquid carrier and abrasive particles that have been treated with a compound.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: May 12, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Shoutian Li, William Ward, Pankaj Singh, Jeffrey Dysard
  • Patent number: 8961807
    Abstract: Disclosed are a polishing composition and method of polishing a substrate. The composition has low-load (e.g., up to about 0.1 wt. %) of abrasive particles. The polishing composition also contains water and at least one anionic surfactant. In some embodiments, the abrasive particles are alpha alumina particles (e.g., coated with organic polymer). The polishing composition can be used, e.g., to polish a substrate of weak strength such as an organic polymer. An agent for oxidizing at least one of silicon and organic polymer is included in the composition in some embodiments.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Lin Fu, Steven Grumbine
  • Patent number: 8960177
    Abstract: The present invention provides a wiresaw cutting method comprising cutting a workpiece with a wiresaw while applying an aqueous cutting fluid to the wiresaw from a recirculating reservoir of cutting fluid, monitoring at least one of a chemical property, a physical property, or both, and adjusting the chemical composition of the cutting fluid while cutting the workpiece to maintain the property being monitored. The present invention additionally provides an apparatus to perform the inventive method.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 24, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Nevin Naguib Sant
  • Patent number: 8920667
    Abstract: The invention provides a chemical-mechanical polishing composition and a method of chemically-mechanically polishing a substrate with the chemical-mechanical polishing composition. The polishing composition comprises (a) abrasive particles, wherein the abrasive particles comprise zirconia, (b) at least one metal ion oxidizer, wherein the at least one metal ion oxidizer comprises metal ions of Co3+, Au+, Ag+, Pt2+, Hg2+, Cr3+, Fe3+, Ce4+, or Cu2+, and (c) an aqueous carrier, wherein the pH of the chemical-mechanical polishing composition is in the range of about 1 to about 7, and wherein the chemical-mechanical polishing composition does not contain a peroxy-type oxidizer.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: December 30, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Lin Fu, Steven Grumbine, Matthias Stender
  • Patent number: 8916061
    Abstract: The invention relates to a chemical-mechanical polishing composition comprising a ceria abrasive, cations of one or more lanthanide metals, one or more nonionic polymers, water, and optionally one or more additives. The invention further relates to a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate comprises one or more of silicon oxide, silicon nitride, and polysilicon.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 23, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Brian Reiss, Michael Willhoff, Daniel Mateja
  • Patent number: 8889553
    Abstract: A method for polishing Through-Silicon Via (TSV) wafers is provided. The method comprises a step of subjecting the surface of a TSV wafer to a polishing treatment with a polishing composition containing an organic alkaline compound, an oxidizing agent selected from sodium chlorite and/or potassium bromate, silicon oxide abrasive particles, and a solvent to simultaneously remove Si and conductive materials at their respective removal rates. By using the method of this invention, Si and conductive materials can be simultaneously polished at higher removal rates to significantly save the necessary working-hour costs for polishing TSV wafers. A polishing composition used in the above method is also provided.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 18, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Kang-Hua Lee, Wen-Cheng Liu
  • Patent number: 8851059
    Abstract: The present invention provides a self-cleaning wiresaw cutting apparatus including a cleaning mechanism adapted to clean the components of the wiresaw before, during, or after a cutting process or to humidify the cutting region of the apparatus. The apparatus contains at least one dispenser adapted to dispense an aqueous fluid onto various components of the wiresaw.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 7, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Carlos Barros, Ramasubramanyam Nagarajan