Patents Assigned to CDTI
  • Publication number: 20140274674
    Abstract: The influence of a plurality of support oxides on coating process for ZPGM catalysts is disclosed. ZPGM catalyst samples with washcoat on suitable ceramic substrate and overcoat including a plurality of support oxides are prepared including an impregnation layer of Cu—Mn spinel or overcoat may be prepared from powder of Cu—Mn spinel with support oxide. Testing of fresh and aged ZPGM catalyst samples is developed under isothermal steady state sweep test condition. Catalyst testing allows to determine effect of a plurality of support oxides on coating processes, TWC performance, and stability of ZPGM catalysts for a plurality of TWC applications. Stability of ZPGM-TWC systems may be improved by promotion of the activity of ZPGM materials incorporating support oxides. Improvements that may be provided by the combination of support oxides with ZPGM materials in the catalyst may lead to a most effective utilization of ZPGM materials in TWC converters.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 18, 2014
    Applicant: CDTi
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140274663
    Abstract: The effect of firing (calcination) cycle on metallic substrates in ZPGM catalyst systems is disclosed. ZPGM catalyst samples with washcoat and overcoat are separately fired in a normal, slow and fast firing cycles to determine the optimal firing cycling that may provide an enhanced catalyst performance, as well as the minimal loss of washcoat adhesion from the samples.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Applicant: CDTi
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271425
    Abstract: Oxidation ZPGM catalyst systems and three way ZPGM catalyst systems are disclosed. ZPGM catalyst systems may oxidize toxic gases, such as carbon monoxide and hydrocarbons, optionally some ZPGM catalyst systems may as well reduce nitrogen oxides that may be included in exhaust gases. ZPGM catalyst systems may include: a substrate, a washcoat, and an overcoat. The washcoat may include at least one ZPGM catalyst and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM catalyst systems.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271390
    Abstract: Described are ZPGM catalyst systems which are free of any platinum group metals for reducing emissions of carbon monoxide, nitrogen oxides, and hydrocarbons in exhaust streams. ZPGM catalyst systems may include a substrate, a washcoat, and an overcoat. Both manganese and copper may be provided as catalysts, with copper in the overcoat and manganese preferably in the washcoat. The manganese can also be provided in the overcoat, but when in the overcoat should be stabilized for greatest effectiveness. A carrier material oxide may be included in both washcoat and overcoat. It has been discovered that the ZPGM catalyst systems are effective even without OSM in washcoat and the ZPGM catalysts within washcoat and overcoat may be best prepared by co-milling an aqueous slurry that includes manganese with alumina for the washcoat and copper and cerium salts with alumina and an OSM, for overcoat prior to overcoating and heat treating.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274662
    Abstract: The present disclosure refers to variation of compositions for catalytic converters free of platinum group metals, which may be employed to manufacture ZPGM oxidation catalyst systems, to remove main pollutants from exhaust of diesel engines, by oxidizing toxic gases. Suitable support oxides material may include ZrO2, ZrO2 doped with lanthanide group metals, Nb2O5, Nb2O5—ZrO2, Al2O3 and Al2O3 doped with lanthanide group metals, TiO2 and doped TiO2 may be used. Materials suitable for use as ZPGM catalysts include Lanthanum (La), Yttrium (Y), Silver (Ag), Manganese (Mn) and combinations thereof. The disclosed ZPGM DOC systems may include perovskite structures with the characteristic formulation ABO3 or related structures. A plurality of methods may be employed for production of ZPGM diesel oxidation catalyst systems substantially free of PGM, which may include a substrate, a washcoat, and an impregnation layer.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140271391
    Abstract: Compositions and methods for the preparation of ZPGM TWC systems are disclosed. ZPGM TWC systems may be employed within catalytic converters to oxidize toxic gases, such as carbon monoxide and other hydrocarbons, as well as to reduce nitrogen oxides. ZPGM TWC systems are completely free of PGM catalyst and may include: a substrate, a washcoat, and an overcoat. Washcoat may include manganese as ZPGM catalyst, and carrier material oxides. Similarly, overcoat may include at least one ZPGM catalyst, carrier material oxides and OSMs. Suitable known in the art chemical techniques, deposition methods and treatment systems may be employed in order to form the disclosed ZPGM TWC systems. ZPGM TWC systems may include high surface area, low conversion temperature catalysts that may exhibit high efficiency in the conversion of exhaust gases.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140274677
    Abstract: It is an object of the present disclosure, to provide an oxygen storage material which may include optimum composition and structure of Cu—Mn spinel as OSM, with a suitable doped zirconia, including Niobium-Zirconia support oxide for OSM applications, which may include a chemical composition substantially free from rare metals. The OSC properties of Cu—Mn spinel with a suitable doped zirconia, including Niobium-Zirconia support oxide as OSM may be determined by comparing variations of Cu—Mn composition for determination of the optimum structure of spinel to achieve optimal OSC properties and thermal stability, which may be particularly useful for treating exhaust gases produced by internal combustion engines, where lean/rich fluctuations in operating conditions may produce high variation in exhaust contaminants that may be removed, achieving optimal OSC property of spinel at different temperatures, as well as thermal stability behavior of OSM.
    Type: Application
    Filed: December 5, 2013
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor