Patents Assigned to Cellectis
  • Publication number: 20180237765
    Abstract: An object of the invention is to provide an electroporation method for treating vesicles with exogenous material for insertion of the exogenous material into the vesicles which includes the steps of: a. retaining a suspension of the vesicles and the exogenous material in a treatment volume in a chamber which includes electrodes, wherein the chamber has a geometric factor (cm?1 ) defined by the quotient of the electrode gap squared (cm2) divided by the chamber volume (cm3), wherein the geometric factor is less than or equal to 0.1 cm?1, wherein the suspension of the vesicles and the exogenous material is in a medium which is adjusted such that the medium has conductivity in a range spanning 50 microSiemens/cm to 500 microSiemens/cm, wherein the suspension is enclosed in the chamber during treatment, and b. treating the suspension enclosed in the chamber with one or more pulsed electric fields.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 23, 2018
    Applicant: Cellectis S.A.
    Inventors: Richard E Walters, Alan D King
  • Patent number: 10006052
    Abstract: Disclosed herein are compositions for inactivating the human CCR5 gene comprising engineered LAGLIDADG homing endonucleases (LHEs) and their derivatives, particularly derived from members of the \-Onul subfamily of LHE. Polynucleotides encoding such endonucleases, vectors comprising said polynucleotides, cells comprising or having been treated with such endonucleases, and therapeutic compositions deriving therefrom are also provided.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: June 26, 2018
    Assignees: CELLECTIS, PRECISION GENOME ENGINEERING, INC.
    Inventors: Jordan Jarjour, Alexander Astrakhan
  • Patent number: 10000746
    Abstract: Disclosed herein are compositions for inactivating the human TCR-alpha gene comprising engineered LAGLIDADG homing endonucleases (LHEs) and their derivatives, particularly derived from members of the \-Onul subfamily of LHEs. Polynucleotides encoding such endonucleases, vectors comprising said polynucleotides, cells comprising or having been treated with such endonucleases, and therapeutic compositions deriving therefore are also provided.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: June 19, 2018
    Assignees: CELLECTIS, PRECISION GENOME ENGINEERING, INC.
    Inventors: Jordan Jarjour, Alexander Astrakhan
  • Patent number: 9982251
    Abstract: An object of the invention is to provide an electroporation method for treating vesicles with exogenous material for insertion of the exogenous material into the vesicles which includes the steps of: a. retaining a suspension of the vesicles and the exogenous material in a treatment volume in a chamber which includes electrodes, wherein the chamber has a geometric factor (cm.sup.?1) defined by the quotient of the electrode gap squared (cm.sup.2) divided by the chamber volume (cm.sup.3), wherein the geometric factor is less than or equal to 0.1 cm.sup.?1, wherein the suspension of the vesicles and the exogenous material is in a medium which is adjusted such that the medium has conductivity in a range spanning 50 microSiemens/cm to 500 microSiemens/cm, wherein the suspension is enclosed in the chamber during treatment, and b. treating the suspension enclosed in the chamber with one or more pulsed electric fields.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: May 29, 2018
    Assignee: CELLECTIS S.A.
    Inventors: Richard E. Walters, Alan D. King
  • Patent number: 9944702
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a CD33 monoclonal antibody, conferring specific immunity against CD33 positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas and leukemia.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: April 17, 2018
    Assignee: CELLECTIS
    Inventor: Roman Galetto
  • Patent number: 9944709
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from a CD123 monoclonal antibody, conferring specific immunity against CD123 positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating lymphomas and leukemia.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: April 17, 2018
    Assignee: CELLECTIS
    Inventor: Roman Galetto
  • Publication number: 20180044399
    Abstract: The invention relates to an inhibitory chimeric antigen receptor (N-CAR) comprising an extracellular domain comprising an antigen binding domain, a transmembrane domain, and, an intracellular domain wherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Switch Motif ITSM, wherein said ITSM is a sequence of amino acid TX1YX2X3X4, wherein X1 is an amino acid X2 is an amino acid X3 is an amino acid and X4 is V or
    Type: Application
    Filed: November 9, 2015
    Publication date: February 15, 2018
    Applicants: Rinat Neuroscience Corp., Cellectis
    Inventors: Arvind RAJPAL, Shobha Chowdary POTLURI, Laurent POIROT, Alexandre JUILLERAT, Thomas Charles PERTEL, Donna Marie STONE, Barbra Johnson SASU
  • Patent number: 9890393
    Abstract: The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: February 13, 2018
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, André Choulika, Laurent Poirot
  • Publication number: 20180021379
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppressive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 25, 2018
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 9855297
    Abstract: The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: January 2, 2018
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, André Choulika, Laurent Poirot
  • Publication number: 20170226183
    Abstract: The present invention relates to a new generation of chimeric antigen receptors (CAR) referred to as multi-chain CARs, which are made specific to the antigen ROR1. Such CARs aim to redirect immune cell specificity and reactivity toward malignant cells expressing the tumor antigen ROR1. The alpha, beta and gamma polypeptides composing these CARs are designed to assemble in juxtamembrane position, which forms flexible architecture closer to natural receptors, that confers optimal signal transduction. The invention encompasses the polynucleotides, vectors encoding said multi-chain CAR and the isolated cells expressing them at their surface, in particularly for their use in immunotherapy. The invention opens the way to efficient adoptive immunotherapy strategies for treating cancer, especially chronic lymphocytic leukemia or solid tumors.
    Type: Application
    Filed: July 29, 2015
    Publication date: August 10, 2017
    Applicant: CELLECTIS
    Inventor: Cècile SCHIFFER-MANNIOUI
  • Publication number: 20170198306
    Abstract: This invention relates to materials and methods for gene editing in mammalian cells, and more particularly to methods for gene editing using DNA-guided Argonaute (Ago) interference systems (DAIS) in T-cells.
    Type: Application
    Filed: March 23, 2015
    Publication date: July 13, 2017
    Applicant: CELLECTIS
    Inventors: Julien Valton, Philippe Duchateau
  • Publication number: 20170073423
    Abstract: The present invention relates to a method to engineer immune cell for immunotherapy. In particular said immune cells are engineered with chimeric antigen receptors, which be activated by the combination of hypoxia and ligand extracellular binding as input signals. The invention also relates to new designed chimeric antigen receptors which are able to redirect immune cell specificity and reactivity toward a selected target exploiting the ligand-binding domain properties and the hypoxia condition. The present invention also relates to cells obtained by the present method, in particular T-cells, comprising said chimeric antigen receptors for use in cancer treatments.
    Type: Application
    Filed: December 19, 2014
    Publication date: March 16, 2017
    Applicant: CELLECTIS
    Inventors: Alexandre JUILLERAT, Claudia BERTONATI, Julien VALTON, Philippe DUCHATEAU, Laurent POIROT
  • Patent number: 9540623
    Abstract: The present invention relates to a method for increasing double-strand-break induced mutagenesis at a genomic locus of interest in a cell, thereby giving new tools for genome engineering, including therapeutic applications and cell line engineering. More specifically, the present invention concerns the combined use of TALEN or meganucleases with TREX2, especially under the form of single-chain proteins.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: January 10, 2017
    Assignee: CELLECTIS
    Inventors: George H. Silva, Rachel Macmaster
  • Publication number: 20160304834
    Abstract: The present invention relates to the directed differentiation of mammalian pluripotent stem cells, especially human pluripotent stem (hPS) cells, into endodermal cells. In particular, the present invention relates to the treatment of mammalian pluripotent stem cells, especially hPS cells, with a DNA demethylating agent while undergoing differentiation into endodermal. The inventors have, as disclosed herein, found that exposing differentiating mammalian pluripotent stem cells, especially hPS cells, to a DNA demethylating agent leads to an improved morphology and improved yield of endodermal cells. The treatment with a DNA de-methylating agent also leads to a significant down-regulation of expression of the stem cell marker Oct4 and to an improved expression of endoderm specific markers, notably sox17, cxcr4 and hhex.
    Type: Application
    Filed: November 28, 2013
    Publication date: October 20, 2016
    Applicant: CELLECTIS SA
    Inventors: Barbara Küppers-Munther, Josefina Edsbagge
  • Publication number: 20160184362
    Abstract: The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 30, 2016
    Applicant: Cellectis
    Inventors: Philippe DUCHATEAU, André CHOULIKA, Laurent POIROT
  • Patent number: 9365864
    Abstract: The invention relates to a set of genetic constructs which allow the efficient and reproducible introduction of a specific nucleotide sequence at a fixed position in the genome by generating a double strand break at a specific position in the genome using a meganuclease and so stimulating a homologous recombination event at this locus between the genomic site and a transfected donor sequence. The present invention also relates to methods using these constructs and to these materials in the form of a kit.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: June 14, 2016
    Assignee: CELLECTIS
    Inventors: Jean-Pierre Cabaniols, Andre Choulika, Christophe Delenda
  • Publication number: 20160145337
    Abstract: The present invention relates to chimeric antigen receptors (CAR). CARs are able to redirect immune cell specificity and reactivity toward a selected target exploiting the ligand-binding domain properties. In particular, the present invention relates to a Chimeric Antigen Receptor in which extracellular ligand binding is a scFV derived from a CD19 monoclonal antibody, preferably 4G7. The present invention also relates to polynucleotides, vectors encoding said CAR and isolated cells expressing said CAR at their surface. The present invention also relates to methods for engineering immune cells expressing 4G7-CAR at their surface which confers a prolonged “activated” state on the transduced cell. The present invention is particularly useful for the treatment of B-cells lymphomas and leukemia.
    Type: Application
    Filed: May 12, 2014
    Publication date: May 26, 2016
    Applicant: Cellectis
    Inventors: Roman GALETTO, Julianne SMITH, Andrew SCHARENBERG, Cècile SCHIFFER-MANNIOUI
  • Publication number: 20160120905
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: May 13, 2014
    Publication date: May 5, 2016
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 9315788
    Abstract: The present invention relates to a method for the generation of compact Transcription Activator-Like Effector Nucleases (TALENs) that can efficiently target and process double-stranded DNA. More specifically, the present invention concerns a method for the creation of TALENs that consist of a single TALE DNA binding domain fused to at least one catalytic domain such that the active entity is composed of a single polypeptide chain for simple and efficient vectorization and does not require dimerization to target a specific single double-stranded DNA target sequence of interest and process DNA nearby said DNA target sequence. The present invention also relates to compact TALENs, vectors, compositions and kits used to implement the method.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: April 19, 2016
    Assignee: CELLECTIS, S.A.
    Inventors: Philippe Duchateau, Julien Valton, Claudia Bertonati, Jean-Charles Epinat, George H. Silva, Alexandre Juillerat, Marine Beurdeley