Patents Assigned to CINCINNATI NDE, LTD.
  • Patent number: 10704901
    Abstract: Systems, methods and computer storage mediums accurately measure wall thickness in a region of interest included in complex curved structures. Embodiments of the present disclosure relate to generating a wall thickness loss distribution map of a region of interest that provides an accurate representation of wall thickness for the region of interest included in a complex curved structure. The wall thickness loss distribution map is generated from a two-dimensional model of the wall thickness loss distribution of the region of interest. The two-dimensional model is converted from a three-dimensional representation of the wall thickness loss distribution of the region of interest. The three-dimensional representation of the wall thickness is generated by ultrasonic waves generated by a transducer system that propagated through the region of interest.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: July 7, 2020
    Assignees: University of Cincinnati, Cincinnati NDE, Ltd.
    Inventors: Geir Instanes, Peter B. Nagy, Francesco Simonetti, Carson L. Willey
  • Publication number: 20170292835
    Abstract: Systems, methods and computer storage mediums accurately measure wall thickness in a region of interest included in complex curved structures. Embodiments of the present disclosure relate to generating a wall thickness loss distribution map of a region of interest that provides an accurate representation of wall thickness for the region of interest included in a complex curved structure. The wall thickness loss distribution map is generated from a two-dimensional model of the wall thickness loss distribution of the region of interest. The two-dimensional model is converted from a three-dimensional representation of the wall thickness loss distribution of the region of interest. The three-dimensional representation of the wall thickness is generated by ultrasonic waves generated by a transducer system that propagated through the region of interest.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Applicants: University of Cincinnati, Cincinnati NDE, Ltd.
    Inventors: Geir Instanes, Peter B. Nagy, Francesco Simonetti, Carson L. Willey
  • Patent number: 9689671
    Abstract: Systems, methods and computer storage mediums accurately measure wall thickness in a region of interest included in complex curved structures. Embodiments of the present disclosure relate to generating a wall thickness loss distribution map of a region of interest that provides an accurate representation of wall thickness for the region of interest included in a complex curved structure. The wall thickness loss distribution map is generated from a two-dimensional model of the wall thickness loss distribution of the region of interest. The two-dimensional model is converted from a three-dimensional representation of the wall thickness loss distribution of the region of interest. The three-dimensional representation of the wall thickness is generated by ultrasonic waves generated by a transducer system that propagated through the region of interest.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: June 27, 2017
    Assignees: University Of Cincinnati, Cincinnati NDE, Ltd.
    Inventors: Geir Instanes, Peter B. Nagy, Francesco Simonetti, Carson L. Willey
  • Publication number: 20140208852
    Abstract: Systems, methods and computer storage mediums accurately measure wall thickness in a region of interest included in complex curved structures. Embodiments of the present disclosure relate to generating a wall thickness loss distribution map of a region of interest that provides an accurate representation of wall thickness for the region of interest included in a complex curved structure. The wall thickness loss distribution map is generated from a two-dimensional model of the wall thickness loss distribution of the region of interest. The two-dimensional model is converted from a three-dimensional representation of the wall thickness loss distribution of the region of interest. The three-dimensional representation of the wall thickness is generated by ultrasonic waves generated by a transducer system that propagated through the region of interest.
    Type: Application
    Filed: January 30, 2014
    Publication date: July 31, 2014
    Applicants: CINCINNATI NDE, LTD., UNIVERSITY OF CINCINNATI
    Inventors: Geir Instanes, Peter B. Nagy, Francesco Simonetti, Carson L. Willey