Patents Assigned to ClearEdge Power, Inc.
  • Publication number: 20130202977
    Abstract: Embodiments are disclosed that relate to a compact steam boiler which may provide steam to a steam reformer in a fuel cell system. For example, one disclosed embodiment provides a steam boiler including an outer shell and a first inner tube and a second inner tube within the outer shell, the first and second inner tubes spaced away from one another. The steam boiler further includes a twisted ribbon positioned inside each of the first and second inner tubes.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: CLEAREDGE POWER, INC.
    Inventor: Brian Sonnichsen
  • Patent number: 8268160
    Abstract: In one example, a specimen is immersed in an electrolyte, and a plurality of potentials of the specimen are experimentally related to a plurality of currents by applying the potentials to the specimen while measuring the currents, or, by drawing the currents through the specimen while measuring the potentials. The potentials are referenced to a hydrogen reference electrode. Hydrogen is supplied to the hydrogen reference electrode via an electrolysis cathode distinct from the hydrogen reference electrode. In another example, an electrochemical cell confines a head gas disposed over the electrolyte. A partial pressure of water vapor in the head gas is adjusted so that the concentration of water in the electrolyte, when equilibrated with the head gas, falls within a predetermined concentration range. The head gas and electrolyte are then equilibrated, thereby controlling the concentration of water in the electrolyte, and an electrochemical property of the specimen is measured.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 18, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Jason M. Tang, Yang Song
  • Patent number: 8263274
    Abstract: Embodiments are disclosed that relate to temperature distribution in a reaction chamber of a steam reformer. For example, one disclosed embodiment provides a steam reformer, comprising a central chamber through which feed gas flows, a reaction chamber surrounding the central chamber and having an inner wall and an outer wall, and a recuperative heat exchanger disposed between the inner wall of the reaction chamber and the central chamber.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: September 11, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Brian Sonnichsen, Bob Sorensen
  • Patent number: 8221692
    Abstract: Embodiments are disclosed that relate to increasing radiative heat transfer in a steam reformer from an exterior shell which includes a diffusion burner to an interior reactor via angled fins coupled to the exterior shell. For example, one disclosed embodiment provides a steam reformer, comprising an exterior shell which includes a diffusion burner and angled fins, the angled fins extending away from an inner surface of the exterior shell and downward toward the diffusion burner. The steam reformer further comprises an interior reactor positioned at least partly within the exterior shell.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 17, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Publication number: 20120164551
    Abstract: Embodiments are disclosed that relate to preventing electrolyte wicking by bipolar plates in a fuel cell system. In one example, a fuel cell system includes a first membrane-electrode assembly and a second membrane-electrode assembly. The fuel cell system further includes a bipolar plate disposed between the first membrane-electrode assembly and the second membrane-electrode assembly, the bipolar plate comprising a graphite layer and a surface energy adjustment layer.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 28, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Christopher Faulkner, Yang Song, Zakiul Kabir, Jason M. Tang
  • Publication number: 20120156581
    Abstract: A method is provided for reducing degradation in a fuel cell assembly, including at least one fuel cell with a PBI membrane, during standby, operation. The method may include electrochemically consuming an oxidant from a cathode coupled to the PBI membrane in response to a disconnection of an external load and supplying fuel to remove or electrochemically consume any back-diffused oxidant to the associated fuel cell sufficient to replace or consume the back-diffused oxidant while the external load is removed, and/or also may include controlling a standby temperature of the fuel cell. In this way, it may be possible to avoid increased cell voltage decay associated with degradation of the PBI in a simple and cost effective system.
    Type: Application
    Filed: February 7, 2012
    Publication date: June 21, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Yang Song, Zakiul Kabir, Craig Evans, Lin Qiu, Donald L. Maricle
  • Patent number: 8202655
    Abstract: A method is provided for reducing degradation in a fuel cell assembly, including at least one fuel cell with a PBI membrane, during standby, operation. The method may include electrochemically consuming an oxidant from a cathode coupled to the PBI membrane in response to a disconnection of an external load and supplying fuel to remove or electrochemically consume any back-diffused oxidant to the associated fuel cell sufficient to replace or consume the back-diffused oxidant while the external load is removed, and/or also may include controlling a standby temperature of the fuel cell. In this way, it may be possible to avoid increased cell voltage decay associated with degradation of the PBI in a simple and cost effective system.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: June 19, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Zakiul Kabir, Craig Evans, Lin Qiu, Donald L. Maricle
  • Publication number: 20120141894
    Abstract: Embodiments are disclosed that relate to temperature distribution in a reaction chamber of a steam reformer. For example, one disclosed embodiment provides a steam reformer, comprising a central chamber through which feed gas flows, a reaction chamber surrounding the central chamber and having an inner wall and an outer wall, and a recuperative heat exchanger disposed between the inner wall of the reaction chamber and the central chamber.
    Type: Application
    Filed: January 18, 2012
    Publication date: June 7, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Brian Sonnichsen, Bob Sorensen
  • Publication number: 20120141910
    Abstract: Embodiments are disclosed herein that relate to PEM fuel cells comprising membrane-electrode assemblies having plural membrane layers. For example, one disclosed embodiment provides a fuel cell including an anode, a cathode, and a multi-layer membrane disposed between the anode and the cathode, the multi-layer membrane comprising two or more polymer membranes layers. The fuel cell further comprises an electrolyte within the multi-layer membrane.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 7, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Nengyou Jia, Jason M. Tang, Yang Song
  • Publication number: 20120141893
    Abstract: Embodiments are disclosed that relate to increasing heat transfer in a steam reformer. For example, one disclosed embodiment provides a steam reformer including an outer wall and an inner wall which includes a step extending outward toward the outer wall and downward toward a bottom of the steam reformer at a position between a top of the steam reformer and the bottom of the steam reformer. The steam reformer further includes a reaction chamber disposed between the outer wall and the inner wall.
    Type: Application
    Filed: January 18, 2012
    Publication date: June 7, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Brian Sonnichsen, Bob Sorensen
  • Patent number: 8168344
    Abstract: The air-cooled thermal management of a fuel cell stack is disclosed. One disclosed embodiment comprises a cooling plate apparatus for an air-cooled fuel cell stack, where the cooling plate comprises a body configured to receive heat from one or more fuel cells in thermal communication with the body, and airflow channels formed in the body and configured to allow a flow of a cooling air to pass across the body. An insulating structure is disposed in the airflow channels, wherein the insulating structure has decreasing thickness from a cooling air inlet toward a cooling air outlet.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 1, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: George W. Hawkins, Zakiul Kabir, Qimin Ming, Yang Song
  • Patent number: 8168339
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: May 1, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Publication number: 20120076697
    Abstract: Embodiments are disclosed that relate to increasing radiative heat transfer in a steam reformer from an exterior shell which includes a diffusion burner to an interior reactor via angled fins coupled to the exterior shell. For example, one disclosed embodiment provides a steam reformer, comprising an exterior shell which includes a diffusion burner and angled fins, the angled fins extending away from an inner surface of the exterior shell and downward toward the diffusion burner. The steam reformer further comprises an interior reactor positioned at least partly within the exterior shell.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Patent number: 8119294
    Abstract: A method is provided for reducing degradation in a fuel cell assembly, including at least one fuel cell with a PBI membrane, during standby, operation. The method may include electrochemically consuming an oxidant from a cathode coupled to the PBI membrane in response to a disconnection of an external load and supplying fuel to remove or electrochemically consume any back-diffused oxidant to the associated fuel cell sufficient to replace or consume the back-diffused oxidant while the external load is removed, and/or also may include controlling a standby temperature of the fuel cell. In this way, it may be possible to avoid increased cell voltage decay associated with degradation of the PBI in a simple and cost effective system.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 21, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Zakiul Kabir, Craig Evans, Lin Qiu, Donald L. Maricle
  • Publication number: 20120034535
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 9, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Patent number: 8071247
    Abstract: Embodiments are disclosed that relate to increasing radiative heat transfer in a steam reformer from an exterior shell which includes a diffusion burner to an interior reactor via angled fins coupled to the exterior shell. For example, one disclosed embodiment provides a steam reformer, comprising an exterior shell which includes a diffusion burner and angled fins, the angled fins extending away from an inner surface of the exterior shell and downward toward the diffusion burner. The steam reformer further comprises an interior reactor positioned at least partly within the exterior shell.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: December 6, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Patent number: 8043750
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 25, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Patent number: 8038968
    Abstract: Embodiments are disclosed that relate to increasing a temperature in a low temperature zone in a steam reforming reactor via a radiative heating shunt. For example, one disclosed embodiment provides a steam reforming reactor comprising a reaction chamber having an interior surface, a packing material located within the reaction chamber, and a radiative heating shunt extending from the interior surface into the reaction chamber. The radiative heating shunt comprises a porous partition enclosing a sub-volume of the reaction chamber bounded by the porous partition and a portion of the interior surface, the sub-volume being at least partly free of packing material such that radiative heat has a path from the interior surface to a distal portion of the porous partition that is unobstructed by packing material.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 18, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Publication number: 20110223517
    Abstract: In one embodiment, a method of making an MEA for a fuel cell comprises arranging a cathodic structure on a first surface of a PEM, and arranging an anodic structure on a second surface of the PEM, opposite the first surface, the anodic structure containing more PA per unit volume than the cathodic structure. The method further comprises pressing the cathodic and anodic structures to the PEM to form the MEA.
    Type: Application
    Filed: March 30, 2011
    Publication date: September 15, 2011
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Nengyou Jia, Jason M. Tang, Yang Song
  • Publication number: 20110206570
    Abstract: Embodiments are disclosed that relate to increasing a temperature in a low temperature zone in a steam reforming reactor via a radiative heating shunt. For example, one disclosed embodiment provides a steam reforming reactor comprising a reaction chamber having an interior surface, a packing material located within the reaction chamber, and a radiative heating shunt extending from the interior surface into the reaction chamber. The radiative heating shunt comprises a porous partition enclosing a sub-volume of the reaction chamber bounded by the porous partition and a portion of the interior surface, the sub-volume being at least partly free of packing material such that radiative heat has a path from the interior surface to a distal portion of the porous partition that is unobstructed by packing material.
    Type: Application
    Filed: October 28, 2010
    Publication date: August 25, 2011
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen