Patents Assigned to Clemson University Research Foundation
  • Patent number: 11150251
    Abstract: The present invention provides an in vitro method for identifying a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation for the manufacture of a diagnostic or therapeutic agent. The present invention further provides the identified compounds and pharmaceutical compositions, and assays and kits for identifying a compound or using a compound that promotes endothelial cell adhesion, endothelial cell spreading, endothelial cell migration and/or endothelial cell proliferation and is useful for bioprinting.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 19, 2021
    Assignees: Clemson University Research Foundation, MUSC Foundation for Research Development
    Inventors: Ying Mei, Jia Jia, Chung-Jen James Chou
  • Patent number: 11140840
    Abstract: A plant propagation system is described that can be utilized for micropropagation through early stages of plant development. A system can include multiple plant support matrices, containers for the matrices, and optionally a tool for separating sections of a plant support matrix from the remainder of the matrix. During use developing plant tissue can be transferred between matrices and growth media can be varied with little or no damage to developing plant tissue and lower chances for contamination of the developing plant tissues.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: October 12, 2021
    Assignees: Pioneer Hi-Bred International, Inc., Clemson University Research Foundation
    Inventors: Jeffrey Adelberg, Amber E. Heck, David Dallinger Kurth, Justine M. Olszewski
  • Patent number: 11034928
    Abstract: Bioreactors and components of bioreactors are described as may be beneficially utilized in development and conditioning of cellular materials for study or implant. The bioreactors are modular and components of the bioreactors can be easily assembled with alternatives provided to develop specific, predetermined conditioning environments for cellular materials (e.g., implantable tissue). By selection of one of multiple alternative compliance chambers, a bioreactor can be utilized to condition tissue in a low pressure circuit (e.g., a pulmonary heart circuit), and by utilization of an alternative compliance chamber, the bioreactor can instead condition tissue in a high pressure circuit (e.g., an aortic heart circuit).
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: June 15, 2021
    Assignee: Clemson University Research Foundation
    Inventors: Leslie Sierad, Christopher Delaney, Richard Pascal, III, Dan Simionescu, Agneta Simionescu
  • Patent number: 10998711
    Abstract: An improved DC circuit breaker is provided for automatically detecting and isolating a fault between a source and a ground. The DC circuit breaker comprises at least one switch, in electrical series with a first inductor between the source and a load, and a second inductor magnetically coupled to the first inductor wherein a first side of the second inductor is electrically connected to the load and a second side of the second inductor is grounded through a capacitor.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 4, 2021
    Assignee: Clemson University Research Foundation
    Inventor: Keith A. Corzine
  • Patent number: 10994468
    Abstract: Foldable composite structures and methods for fabricating foldable composite structures are provided. For example, a method comprises selectively applying a rigidifying substance to a sheet of composite material to define a plurality of hinges; allowing the rigidifying substance to cure; and folding the sheet of composite material along the hinges to form the composite structure. As another example, a method comprises laying out flat a sheet of composite material; masking a plurality of hinges on the sheet; applying a polymer to a sheet face; curing the polymer; removing the masking; and folding the sheet along the hinges to form the composite structure. An exemplary foldable composite structure comprises a planar sheet of composite material folded to define a plurality of surface segments and a plurality of hinges. A portion of the hinges form peaks and the remainder of the hinges form valleys. The hinges are defined between adjacent surface segments.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: May 4, 2021
    Assignee: Clemson University Research Foundation
    Inventor: Joseph Choma
  • Patent number: 10987449
    Abstract: Systems and methods that establish a pressure differential across a tissue wall to encourage complete decellularization of the wall are described. The methods can be utilized for decellularization of blood vessel tissue including heart valves and surrounding tissues. The methods and systems can essentially completely decellularize the treated tissue segments. Systems can be utilized to decellularize one or multiple tissue segments at a single time.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: April 27, 2021
    Assignee: Clemson University Research Foundation
    Inventors: Leslie Sierad, Eliza Laine Shaw, George Fercana, Dan Simionescu
  • Patent number: 10988735
    Abstract: Described herein are tissues containing semiconductor nanomaterials. In some embodiments, the tissues include vascular cells, cardiomyocytes, and/or cardiac fibroblasts. The tissue may be scaffold-free. In some embodiments, the tissue includes an electrically conductive network. The tissue may exhibit synchronized electrical signal propagation within the tissue. In some embodiments, the tissue exhibits increased functional assembly of cardiac cells and/or increased cardiac specific functions compared to a cardiac tissue prepared using a conventional tissue culture method. Methods of preparing and using such tissues are also described herein.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: April 27, 2021
    Assignees: Clemson University Research Foundation, MUSC Foundation for Research Development, The University of Chicago
    Inventors: Ying Mei, Tan Yu, Dylan Richards, Donald R. Menick, Bozhi Tian
  • Patent number: 10942381
    Abstract: Terbium-based Faraday rotators, optical isolators incorporating the Faraday rotators, and methods for forming the Faraday rotators are described. Formation methods include hydrothermal growth methods for forming monolithic single crystals of TbO(OH) as Faraday rotator materials. TbO(OH) can also be used as a starting material in a hydrothermal growth method to form monolithic single crystals of TbxYb(2-x)O3, in which x is between about 0.05 and about 1 or terbium aluminum garnet TAG for use as a Faraday rotator in an optical isolator.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: March 9, 2021
    Assignee: Clemson University of Research Foundation
    Inventors: Joseph William Kolis, Duminda Sanjeewa, Kyle Fulle
  • Patent number: 10899613
    Abstract: A hydrogen permeation membrane is provided that can include a carbon-based material (C) and a ceramic material (BZCYT) mixed together. The carbon-based material can include graphene, graphite, carbon nanotubes, or a combination thereof. The ceramic material can have the formula BaZr1-x-y-zCexYyTzO3-?, where 0?x?0.5, 0?y?0.5, 0?z?0.5, (x+y+z)>0; 0???0.5, and T is Yb, Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, or a combination thereof. In addition, the BZYCT can be present in the C-BZCYT mixture in an amount ranging from about 40% by volume to about 80% by volume. Further, a method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 26, 2021
    Assignees: University of South Carolina, Clemson University Research Foundation
    Inventors: Fanglin Chen, Shumin Fang, Kyle Brinkman, Siwei Wang, Jian He, Yufei Liu
  • Patent number: 10883962
    Abstract: Systems for detecting analytes in electrical double layer nanopore devices and methods of use are provided.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: January 5, 2021
    Assignees: University of Kentucky Research Foundation, Clemson University Research Foundation
    Inventors: Guigen Zhang, Samuel Bearden
  • Patent number: 10865316
    Abstract: Materials and methods for prevention of biofouling that incorporate the presence of a conotoxin peptide on a surface are described. The conotoxin peptide is either directly or indirectly adhered to the surface and interferes with the ability of biofouling organisms to settle on the surface.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 15, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Andrew Mount, Bin San Chan, Mary Beth Johnstone
  • Patent number: 10827667
    Abstract: Disclosed are methods and systems for determining the amount of material contained in a windrow. In particular embodiments, the methods and systems are applicable to agricultural applications, and in particular to hay yield monitoring. Systems include a remote sensing technology to determine windrow height. Remote sensing methods can include ultrasonic sensors, optical sensors, and the like. Systems can provide real time yield data.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 10, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Kendall R. Kirk, H. Guy Ramsey, IV
  • Patent number: 10821654
    Abstract: Methods for forming carbon-based cellular structures and 3D structures that can be formed by use of the methods are described. Methods include shaping an essentially 2D sheet that includes an organic polymer to form a 3D precursor followed by heat treatment of the 3D precursor. Heat treatment carbonizes the polymer to form an amorphous carbon. A metal precursor solution can be applied to the 3D precursor, and subsequent heat treatment can form a metal carbide, metal nanoparticles, or other carbon-based materials on/in the cellular structures.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: November 3, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Rodrigo Martinez-Duarte, Monsur Islam, Joshua Flach
  • Patent number: 10800966
    Abstract: Pyrazoline-based fluorophores and plastic scintillators incorporating the fluorophores are described. The fluorophores include 1,3,5-triaryl substituted pyrazolines. A fluorophore of a plastic scintillator can be a 1-phenyl-4,5-1H-dihydroyrazole having the structure: in which R1 and R2 are independently selected from a heteroaryl group including one or more of an oxygen, selenium or sulfur atom in the ring; an aryl halide group; or a phenyl alkyl including a C1 to C18 saturated or unsaturated alkyl that optionally includes a reactive functionality.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: October 13, 2020
    Assignees: Clemson University Research Foundation, Institute of Organic Chemistry, National Academy of Science of Ukraine
    Inventors: Valery N. Bliznyuk, Ayman F. Seliman, Timothy A. DeVol, Nadezhda A. Derevyanko, Alexander A. Ishchenko
  • Patent number: 10731684
    Abstract: Electrically assisted flow drill screwdriving processes (EAFDS) and devices are described. The methods can augment traditional FDS and allow for softening of metals of a stack-up, which can enable FDS joining of thicker and stronger materials such as boron steel. EAFDS methods can reduce cycle time and can be used to join thicker cross-sections with reduced installation torque. Also disclosed are fixtures for attachment to existing devices that can provide for the electrical augmentation of existing FDS processes.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: August 4, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Brandt J. Ruszkiewicz, Jamie D. Skovron, Laine Mears
  • Patent number: 10695463
    Abstract: Biocompatible biomimetic materials that exhibit desirable mechanical properties while also encouraging cell ingrowth and proliferation are described. The biomaterials include a multi-layer laminate of three or more decellularized aligned collagen tissues. The individual layers are aligned with one another in an angle-ply arrangement, with the collagen of each layer aligned at an angle to the collagen of the adjacent layer. The biomaterials are useful as collagenous graft materials such as a patch for a hernia in an annulus fibrosus or grafting materials for repair of tendons, ligaments, cartilage and other musculoskeletal tissues.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: June 30, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Rachel McGuire, Ryan Borem, Jeremy Mercuri
  • Publication number: 20200201136
    Abstract: This system and method of for providing a tunable orbital angular momentum system for providing higher order Bessel beams comprising: an acousto-optical deflector configured to receive an input beam, deflect a first portion of the input beam a first deflection angle relative to an axis of propagation and along an optical axis and deflect a second portion of the input beam a second deflection angle relative to the optical axis; a line generator disposed along the optical angle for receiving the first portion and the second portion of the input beam and provide an elliptical Gaussian mean; a log-polar optics assembly disposed along the optical angle for receiving the elliptical Gaussian beam and wrapping the elliptical Gaussian beam with an asymmetric ring; and, a Fourier lens configured to receive the wrapped elliptical Gaussian beam.
    Type: Application
    Filed: December 23, 2019
    Publication date: June 25, 2020
    Applicant: Clemson University Research Foundation
    Inventors: Eric G. Johnson, Jerome Keith Miller, Richard Watkins, Kaitlyn Morgan, Wenzhe Li, Yuan Li
  • Patent number: 10688061
    Abstract: Methods and delivery agents for treatment of connective tissue that includes elastic fibers are described. Delivery agents are nano- or micro-sized particles that include a biologically active compound useful in treatment of degraded elastic fibers and an anchoring agent at a surface that binds at or near the area of degraded elastic fibers. The delivery agents may be utilized for targeted delivery of biologically active compounds to degraded elastic fibers so as to maintain and/or regenerate the elastin component of connective tissue, and prevent further degradation and/or rehabilitate the structural architecture of the connective tissue.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 23, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Naren Vyavahare, Aditi Sinha
  • Patent number: 10675381
    Abstract: Methods for developing a decellularized tissue and biomaterials for use as biomimetic grafts or in vitro cellular scaffolds formed with the decellularized tissue are described. The biomaterials are particularly well suited for use as an intervertebral disc graft. The decellularized tissue is formed from an intervertebral disc source tissue and can be substantially decellularized and substantially free of potential immunogenic material (e.g., DNA and RNA), while maintaining ECM materials including both glycosaminoglycan and collagen.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: June 9, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Christopher Fernandez, Jeremy Mercuri
  • Patent number: 10667745
    Abstract: Implantable sensors for determining bone health are described that can be utilized in conjunction with orthopedic implants. The sensors can include passive strain gauges or passive chemical sensors that can be read by radiographic imaging techniques. Sensors can be affixed to implantable support devices so as to non-invasively monitor the effect of load on the implant for instance to provide a quantitative assessment of when a fracture is sufficiently healed to allow safe weight-bearing upon the limb. Alternatively, sensors can monitor the health of a local implant area, for instance to monitor the implant area of early stage infection or healing of a fusion procedure.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: June 2, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Jeffrey Anker, Caleb Behrend, John DesJardins