Patents Assigned to CONSORTIUM DE RECHERCHE BRP-UNIVERSITE DE SHERBROOKE S.E.N.C.
  • Patent number: 9109694
    Abstract: A driving pulley for a CVT has a shaft, a fixed sheave mounted on the shaft, a first sleeve disposed around the shaft and being operatively connected to the shaft, a movable sheave mounted on the first sleeve, a second sleeve disposed around the first sleeve and being connected to the shaft, a spring biasing the movable sheave away from the fixed sheave, and a CVT chamber having an annular cross-section. The fixed and movable sheaves are adapted to receive a belt therebetween. The CVT chamber has at least one opening adapted for fluidly communicating the CVT chamber with a hydraulic fluid reservoir. Hydraulic pressure in the CVT chamber biases the movable sheave toward the fixed sheave. The CVT chamber has an inner wall formed by the first sleeve, an outer wall formed by the second sleeve, an outer end, and an inner end formed by the movable sheave.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: August 18, 2015
    Assignee: CONSORTIUM DE RECHERCHE BRP-UNIVERSITE DE SHERBROOKE S.E.N.C.
    Inventors: Eric Lafreniere, David Monfette, Roger Rioux
  • Patent number: 8608522
    Abstract: A jet propulsion unit has a water inlet, a pump body, an impeller, and a valve assembly fluidly. The valve assembly has a valve housing having an inlet fluidly connected to the pump body, a first outlet and a second outlet. A valve body is disposed in the valve housing and is movable between first and second positions. In the first position, water from a body of water flows consecutively through the water inlet, the pump body, the inlet of the valve housing, the valve housing and the first outlet of the valve housing. In the second position, water from the body of water flows consecutively through the water inlet, the pump body, the inlet of the valve housing, the valve housing, and the second outlet of the valve housing. A watercraft having the jet propulsion unit is also disclosed.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 17, 2013
    Assignee: Consortium de Recherche BRP-Universite de Sherbrooke S.E.N.C.
    Inventors: Gilbert Lefrancois, Real Dupont, Simon Richard, Roger Rioux
  • Publication number: 20130080007
    Abstract: A method of controlling a hydraulic CVT of a vehicle comprises: determining a speed of rotation of a driving shaft; determining a speed of rotation of a driven shaft; determining a ratio of the speed of rotation of the driving shaft versus the speed of rotation of the driven shaft; determining an engine torque; determining a base clamping force to be applied by the driving pulley onto the belt based on the ratio and the engine torque; determining a desired speed of rotation of the driving shaft; determining a corrective clamping force by comparing the speed of rotation of the driving shaft to the desired speed of rotation of the driving shaft; and controlling a hydraulic pressure applied to a movable sheave to apply a sum of the base and corrective clamping forces onto the belt. A vehicle having a CVT controlled by the method is also disclosed.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 28, 2013
    Applicant: Consortium de Recherche BRP - Universite de Sherbrooke S.E.N.C.
    Inventors: David Monfette, Jean-Philippe Desbiens, Roger Rioux
  • Publication number: 20120275906
    Abstract: A jet propulsion unit has a water inlet, a pump body, an impeller, and a valve assembly fluidly. The valve assembly has a valve housing having an inlet fluidly connected to the pump body, a first outlet and a second outlet. A valve body is disposed in the valve housing and is movable between first and second positions. In the first position, water from a body of water flows consecutively through the water inlet, the pump body, the inlet of the valve housing, the valve housing and the first outlet of the valve housing. In the second position, water from the body of water flows consecutively through the water inlet, the pump body, the inlet of the valve housing, the valve housing, and the second outlet of the valve housing. A watercraft having the jet propulsion unit is also disclosed.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: CONSORTIUM DE RECHERCHE BRP - UNIVERSITE DE SHERBROOKE S.E.N.C
    Inventors: Gilbert LEFRANCOIS, Real DUPONT, Simon RICHARD, Roger RIOUX
  • Publication number: 20120272885
    Abstract: A watercraft has first and second jet propulsion units. The first jet propulsion unit includes a first inlet, a first outlet, a second outlet, and a first valve. The second jet propulsion unit includes a second inlet, a third outlet, a fourth outlet, and a second valve. The watercraft also includes first and second discharge ports disposed on opposite sides of a longitudinal centerline, a first pipe fluidly communicating the first discharge port with the second outlet, a second pipe fluidly communicating the second discharge port with the second outlet, third and a fourth discharge ports disposed on opposite sides of the longitudinal centerline, a third pipe fluidly communicating the third discharge port with the fourth outlet, and a fourth pipe fluidly communicating the fourth discharge port with the fourth outlet.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: CONSORTIUM DE RECHERCHE BRP - UNIVERSITE DE SHERBROOKE S.E.N.C.
    Inventors: David FOLEY, Simon RICHARD, Real DUPONT, Roger RIOUX, Gilbert LEFRANCOIS
  • Publication number: 20120178318
    Abstract: An inlet grate cleaning system for a water jet propulsion system to be used in a watercraft. The water jet propulsion system has a water passage, the water passage has an inlet and the inlet has a forward area and a rearward area with respect to the watercraft. The inlet grate cleaning system comprises a pump and at least one water intake fluidly connected to the pump. At least one water outlet is also fluidly connected to the pump. The pump is adapted for pumping water from the at least one water intake to the at least one water outlet to create at least one jet of water. The at least one water outlet is positioned so as to direct the at least one jet of water toward an inlet grate.
    Type: Application
    Filed: September 30, 2009
    Publication date: July 12, 2012
    Applicant: CONSORTIUM DE RECHERCHE BRP-UNIVERSITE DE SHERBROOKE S.E.N.C.
    Inventors: Mihai Rasidescu, Roger Rioux, Eric Menard, Patrice Dusablon
  • Publication number: 20120178561
    Abstract: A driving pulley for a CVT has a shaft, a fixed sheave mounted on the shaft, a first sleeve disposed around the shaft and being operatively connected to the shaft, a movable sheave mounted on the first sleeve, a second sleeve disposed around the first sleeve and being connected to the shaft, a spring biasing the movable sheave away from the fixed sheave, and a CVT chamber having an annular cross-section. The fixed and movable sheaves are adapted to receive a belt therebetween. The CVT chamber has at least one opening adapted for fluidly communicating the CVT chamber with a hydraulic fluid reservoir. Hydraulic pressure in the CVT chamber biases the movable sheave toward the fixed sheave. The CVT chamber has an inner wall formed by the first sleeve, an outer wall formed by the second sleeve, an outer end, and an inner end formed by the movable sheave.
    Type: Application
    Filed: September 15, 2009
    Publication date: July 12, 2012
    Applicant: Consortium de Recherche BRP-Universite de Sherbrooke S.E.N.C.
    Inventors: Eric Lafreniere, David Monfette, Roger Rioux
  • Publication number: 20120179344
    Abstract: A method of controlling a hydraulic CVT of a vehicle comprises: determining a speed of rotation of a driving shaft; determining a speed of rotation of a driven shaft; determining a ratio of the speed of rotation of the driving shaft versus the speed of rotation of the driven shaft; determining an engine torque; determining a base clamping force to be applied by the driving pulley onto the belt based on the ratio and the engine torque; determining a desired speed of rotation of the driving shaft; determining a corrective clamping force by comparing the speed of rotation of the driving shaft to the desired speed of rotation of the driving shaft; and controlling a hydraulic pressure applied to a movable sheave to apply a sum of the base and corrective clamping forces onto the belt. A vehicle having a CVT controlled by the method is also disclosed.
    Type: Application
    Filed: September 15, 2009
    Publication date: July 12, 2012
    Applicant: Consortium de Recherche BRP - Université de Sherbrooke S.E.N.C.
    Inventors: Roger Rioux, David Monfette, Jean-Philippe Desbiens