Patents Assigned to Cook Incorporated
  • Patent number: 7901453
    Abstract: A coated implantable medical device 10 includes a structure 12 adapted for introduction into the vascular system, esophagus, trachea, colon, biliary tract, or urinary tract, and at least one layer 18 of an immunosuppressive agent posited over at least one surface of the structure 12. Optionally, the device 10 can include at least one porous, preferably polymeric layer 20 posited over the layer 18 of immunosuppressive agent, and can alternatively or additionally include at least one coating layer 16 posited on one surface of the structure 12, the at least one layer 18 of immunosuppressive agent being posited in turn on at least a portion of the coating layer 16. The porous layer 20 and the coating layer 16 each provide for the controlled release of the bioactive material from the device 10. The structure 12 is preferably configured as a coronary stent. The polymer of the porous layer 20 is preferably applied by vapor or plasma deposition.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 8, 2011
    Assignees: Cook Incorporated, MED Institute, Inc.
    Inventors: Anthony O. Ragheb, Neal E. Fearnot, William D. Voorhees, III, Thomas G. Kozma, Brian L. Bates, Thomas A. Osborne
  • Patent number: 7901367
    Abstract: The medical device includes a secondary wire guide and an advancement device. The advancement device has a tubular portion with a distal opening and a proximal opening. An edge region of the tubular portion forms the distal opening. A primary wire guide extends through the tubular portion. The secondary wire guide also extends into the tubular portion and has a distal portion configured to engage the edge region of the tubular portion. Accordingly, the secondary wire guide is advanced as the advancement device is translated into the blood vessel.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 8, 2011
    Assignee: Cook Incorporated
    Inventors: David Christian Lentz, Jeffry S. Melsheimer
  • Publication number: 20110054512
    Abstract: An occlusion device (30) includes at least one self-expanding frame (42, 44) and graft material (46). Occlusion occurs by constricting the graft material (46) at a substantially central point or at an end of the device. The constriction is sized such that a guide wire (34) is able to pass therethrough. A valve mechanism (50) includes a screen (52) made from a resilient material and which includes a closable opening (54). The valve mechanism (50) allows a guide wire to pass through the occlusion device (30) whilst an effective physical barrier is maintained after removal of the guide wire (34).
    Type: Application
    Filed: April 3, 2009
    Publication date: March 3, 2011
    Applicants: WILLIAM COOK EUROPE APS, COOK INCORPORATED
    Inventors: Per Hendriksen, Jacob Lund Clausen, Frank K. Christiansen
  • Publication number: 20110054585
    Abstract: A trigger wire release mechanism is disclosed that includes a control member for selectively releasing a trigger wire (22, 44) from a prosthesis retaining device. The control member includes an elongate body member (36) and a guide member (24, 25, 93, 94) slidably disposed on the elongate body member. The trigger wire 1 (22, 44) includes a distal end coupled to the prosthesis retaining device and a proximal end coupled to the guide member. The guide member (24, 25, 93, 94) can be moved from a distal end of the elongate body (36) to a proximal end of the elongate body, thereby disengaging the trigger wire (22, 44) from the retaining device. The control member may include a locking mechanism (120) for limiting the axial position of the guide member (24, 25, 93, 94) along the elongate body member (36). A prosthesis control member (81) is also disclosed. The prosthesis control member (81) is adapted to control the position of the prosthesis during deployment.
    Type: Application
    Filed: December 22, 2006
    Publication date: March 3, 2011
    Applicant: COOK INCORPORATED
    Inventor: Thomas A. Osborne
  • Publication number: 20110054379
    Abstract: The present disclosure provides apparatus and methods for removing thrombus outside of a hemodialysis. The hemodialysis catheter comprises an elongate shaft comprising a plurality of lumens. A first lumen has a first distal port. The first lumen is configured for the flow of a fluid in a first direction. A second lumen has a second distal port proximal to the first distal port. The second lumen is configured for the flow of the fluid in a second direction opposite to the first direction. A third lumen has a third distal port proximal to the second distal port. An elongate device is disposed through the third lumen. The elongate device has an operable member on a distal end or a device to connect to an operable member disposed on the elongate shaft. The operable member is configured to engage and remove thrombus from an exterior surface on the elongate shaft.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: Cook Incorporated
    Inventors: Michael W. Hardert, Michael R. Kurrus, Amy Lee Hruska, Tyson L. Rugenstein, Elizabeth A. Theobald
  • Patent number: 7896888
    Abstract: An introducer system for introducing a plurality of wire guides into a vessel of a patient includes first and second wire guides, and a catheter. The first wire guide has a curved proximal end, and a distal end sufficiently flexible for passage through the vessel to a target site for the procedure. The catheter has proximal and distal open ends, and a lumen extending therebetween. At least the distal end of the catheter has sufficient flexibility for passage over the first wire guide to the target site, and has an inwardly curved portion between the proximal and distal open ends. The catheter further has a side port proximally positioned along the inwardly curved portion. The side port is sized and arranged such that the curve of the first wire guide proximal end is passable therethrough when the catheter is passed over the first wire guide. The second wire guide is sized for passage through the lumen when the first wire guide is positioned in the lumen.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: March 1, 2011
    Assignee: Cook Incorporated
    Inventors: Thomas A. Osborne, Brian L. Bates
  • Patent number: 7896914
    Abstract: A coated implantable medical device 10 includes a structure 12 adapted for introduction into the vascular system, esophagus, trachea, colon, biliary tract, or urinary tract; at least one coating layer 16 posited on one surface of the structure; and at least one layer 18 of a bioactive material posited on at least a portion of the coating layer 16, wherein the coating layer 16 provides for the controlled release of the bioactive material from the coating layer. In addition, at least one porous layer 20 can be posited over the bioactive material layer 18, wherein the porous layer includes a polymer and provides for the controlled release of the bioactive material therethrough. Preferably, the structure 12 is a coronary stent. The porous layer 20 includes a polymer applied preferably by vapor or plasma deposition and provides for a controlled release of the bioactive material.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 1, 2011
    Assignees: Cook Incorporated, MED Institute, Inc.
    Inventors: Brian L. Bates, Anthony O. Ragheb, Neal E. Fearnot, Thomas G. Kozma, William D. Voorhees, III
  • Patent number: 7897167
    Abstract: An implantable graft, which may be inserted into a fistula tract to occlude the primary opening of the fistula, is provided. To prevent unintentional displacement of the graft or extrusion of the graft from the fistula of a patient, the graft may be provided with a cap that extends laterally from at least one end of the body of the graft, where the cap may be integral with the body of the graft, attachable to at least one end of the body of the graft, and/or moveable along the body of the graft. The graft may also have a tail that extends from one end of the body of the graft to assist in placement of the graft in a fistula tract. The graft may be an integral unit made of a single material, such as a heterograft material, or may include distinct components made of the same or different materials. Methods for closing a fistula tract are also provided.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 1, 2011
    Assignees: Cook Incorporated, Cook Biotech Incorporated
    Inventors: David N. Armstrong, Brian L. Bates, Mark W. Bleyer, F. Joseph Obermiller, Umesh H. Patel
  • Publication number: 20110046610
    Abstract: A detachment mechanism, and methods of use, for use in delivering a medical device preferably over a guidewire are provided. The detachment mechanism includes a first and second engagement member. The members are configured to receive the guidewire and have a first end attached to the control member and the device, respectively, a second end, and a notch formed in the body to form an interlocking tooth. The notch is sized to receive the interlocking tooth of the other member. The members are interlockable to couple the medical device to the control member and to allow the guidewire to pass therethrough. The notch can be angled to permit easier detachment between the members and for better torqueability and pushability/pullability between the control member and the medical device. The members can also include a bend region configured to enhance bendability along a portion of the members.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 24, 2011
    Applicant: Cook Incorporated
    Inventor: Darin G. Schaeffer
  • Publication number: 20110046611
    Abstract: A delivery assembly (10) for an implant (30) includes a release mechanism comprising a locking element (52) and a blocking member (56). The locking element (52) includes a latching pin (14) that engages with an eyelet (54) in the implant (30) to attach the implant (30) to a distal end of an inner catheter (36) of the deployment of the delivery assembly (10). The blocking member (56) prevents premature disengagement of the latching pin (14) from the implant (30). Withdrawal of the blocking member (56) allows disengagement of the latching pin (14) once the implant (30) has been correctly positioned within a patient's vasculature. The locking pin (52) and the blocking member (56) extend along the lumen of the inner catheter (36) from a handle (12) at the proximal end thereof, and are arranged such that a guide wire (34) is also able to extend through the lumen of the inner catheter (36). The locking pin (52) and the blocking member (56) preferably have a crescent-shaped transverse cross section.
    Type: Application
    Filed: April 3, 2009
    Publication date: February 24, 2011
    Applicants: WILLIAM COOK EUROPE APS, COOK INCORPORATED
    Inventor: Frank K. Christiansen
  • Patent number: 7892215
    Abstract: An insert for joining sheaths for use in a medical device is described. The insert has a first end including a first operative coupling and a second end including a second operative coupling. The first operative coupling is for engaging a first tube at its distal end, and the second operative coupling is for engaging a second tube at its proximal end. The insert also includes a first passageway extending through the insert from the second end to an exit port disposed between the first operative coupling and the second operative coupling. This disclosure also provides a catheter including such an insert, and a method of assembling a catheter.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: February 22, 2011
    Assignee: Cook Incorporated
    Inventors: Jeffry Scott Melsheimer, Dharmendra Pal
  • Patent number: 7892275
    Abstract: A stent graft introducer has a nose cone dilator (8) and a distally opening capsule (18) on the nose cone dilator, a balloon guide (2, 30) extending into the capsule and affixed therein. Upon completion of deployment of a stent graft, a balloon catheter (96) including an inflatable balloon (98) thereon can be advanced over the balloon guide at least partially into the nose cone whereby the balloon can be inflated therein to provide a smooth transition from the nose cone to a delivery sheath (10) for retraction of the nose cone dilator through the deployed stent graft. The balloon guide can be a separate wire (30).
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: February 22, 2011
    Assignees: William A. Cook Australia Pty. Ltd., William Cook Europe ApS, Cook Incorporated
    Inventors: David Ernest Hartley, Krasnodar Ivancev, Michael Lawrence-Brown
  • Publication number: 20110040368
    Abstract: A stent (10) has wrapped therearound a barb element (12) formed of a length of wire provided with first and second ends (14, 16) forming barb prongs. In intermediate zone (22), the barb element (12) is wrapped or coiled. The two pronged ends (14, 16) extend out of the graft element (26) to provide an anchoring function to the medical device. As well as being wrapped onto a strut of the stent (10), the barb element (12) is sutured to the stent (10) and to the graft material (26) by suture stitching (28). The turns of the coiling or wrapping in section (22) assist in fixing the barb element (12) relative to the suture (28) and thus to the stent graft (24). The barb elements (12) could be made of any suitable material, including Nitinol. This structure of barb elements provides an effective arrangement which is easy to manufacture, which provides strong barbs able to withstand the high processing temperatures required for setting shape memory elements of the device.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 17, 2011
    Applicants: William Cook Europe ApS, Cook Incorporated
    Inventor: Jesper Schade PETERSEN
  • Publication number: 20110040369
    Abstract: A stent graft (10) includes a tubular graft element (12) to which there are attached a plurality of stent rings (14). The stent rings (14) are formed of a plurality of stent struts (16) arranged in a zig-zag arrangement with alternating peaks (18) and valleys (20). The end-most stent (22) is located at the proximal end (24) of the graft tube (12). Between adjacent peaks (18) of the end-most stent (22), there is provided a series of bridging elements (28). These are preferably formed of Nitinol wire and to be substantially more flexible than the stent struts (14). The bridging elements (28) extend in the region of graft material between adjacent stent peaks (18) and are attached to the graft material, for example by suturing. The bridging elements (28) are substantially more flexible than the stent ring (22) and therefore impart little opening force on the graft material in comparison to the force produced by the stent ring (22).
    Type: Application
    Filed: August 3, 2010
    Publication date: February 17, 2011
    Applicants: William Cook Europe ApS, Cook Incorporated
    Inventors: Erik Rasmussen, Bent Ohlenschlager, Kim Moegelvang Jensen, Jesper Schade Petersen
  • Patent number: 7887576
    Abstract: An endoluminal device comprises a stent and a tubular graft supported by the stent. The graft has a proximal and a distal opening and comprises a synthetic material and a bioremodelable material. The bioremodelable material is disposed on an exterior surface in at least one band adjacent at least one of the proximal and distal openings.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: February 15, 2011
    Assignees: Cook Incorporated, Cook Biotech Incorporated, MED Institute, Inc.
    Inventors: Clinton D. Bahler, Michael P. DeBruyne, Neal E. Fearnot, Alan R. Leewood, Jason A. Mead, Thomas A. Osborne, Jichao Sun, Lal Ninan
  • Publication number: 20110034863
    Abstract: A medical device and method of applying said medical device to deliver drugs and to remove thrombus or soft tissue clots from vascular or other lumens in a patient is presented. The medical device generally comprises an elongated tubular delivery member having a proximal portion and a distal portion that differ in rigidity and a leak-free connector that is in contact with the proximal portion of the delivery member and is compatible for use with fibrinolytic agents and application of a vacuum. The delivery member includes a metal core made out of multiple shaped-wire strands and a polymer overlay disposed about the core. The wire strands, which have both an A-side and a B-side, are helically wound to form a polygonal shaped lumen whose inner diameter is defined by the A-side of the strands.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Applicant: Cook Incorporated
    Inventor: Andrew K. Hoffa
  • Publication number: 20110034860
    Abstract: A micro-needle array is provided that may be used to deliver a bioactive agent to a therapeutic target. The micro-needle array preferably includes a substrate, a plurality of micro-needles integral with the substrate, and a bioactive agent. At least one micro-needle preferably includes a top surface, a bottom surface, a side surface, and a cavity defined by an inner surface. The bioactive agent may be disposed on the substrate and the plurality of micro-needles. The at least one micro-needle may further include a slit connecting the cavity to an aperture, the slit extending from the top surface to the bottom surface.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Applicant: Cook Incorporated
    Inventor: Jeffry S. Melsheimer
  • Patent number: 7879387
    Abstract: A process for electrostatically coating a stent on a catheter. A conductor which is permanently affixed to the catheter contacts a stent mounted on the catheter. Conductive ink applied to the catheter may be used as the conductor. An electrical charge is applied to the conductor. The stent is then coated using an electrostatic coating process.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: February 1, 2011
    Assignee: Cook Incorporated
    Inventor: Randy Joe Myers
  • Publication number: 20110022003
    Abstract: An embolization delivery system and a method of using said system by a physician to deliver an embolization coil into the vasculature of a patient is disclosed. The embolization delivery system comprises a delivery tube in the form of a catheter or wire guide that may be reversibly inserted, a delivery catheter placed into the vasculature of a patient, a connector disposed around and permanently coupled to the delivery tube, a detachable embolization coil disposed within a portion of the connector and held in place by compressive forces exerted by the connector, and a release mechanism for detaching the embolization coil. The release mechanism includes a wire with one end being coupled to the catheter, a middle portion being in contact with both the connector and coil, and a second end that may be manipulated in a predetermined manner by the attending physician.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Applicant: Cook Incorporated
    Inventor: Kurt J. Tekulve
  • Publication number: 20110022075
    Abstract: To prevent a small diameter catheter 10 of soft material from collapsing when being used to aspirate a blood clot 25, the lumen 16 of the catheter contains a longitudinal member 26 having radially-extending fin elements 33. The longitudinal member may itself be a catheter having a lumen 22 through which passes a wire 27 having at its distal end an expandable basket 28 for retrieving the clot.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 27, 2011
    Applicants: William Cock Europe ApS, Cook Incorporated
    Inventors: Frank Christiansen, Per Elgård, Anders Ginge Jensen, Kian Olsen, Carsten Skødt