Patents Assigned to Cornell University
  • Patent number: 11796462
    Abstract: An integrated device for the detection of cancerous tissue including an optical fiber configured to receive at a first end modulated infrared light and to conduct the modulated infrared light from the first end to a second end; and a plasmonic metasurface, disposed on the second end of the optical fiber, configured to localize evanescent infrared light to sub-I 00 nanometer distances from the plasmonic metasurface of the optical fiber such that the localized evanescent infrared light penetrates only the membrane portion of a cell held against the second end, wherein the second end is configured to receive reflected light reflected from the membrane portion the cell, the reflected light including spectroscopic information indicative of whether the cell is noncancerous or cancerous.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: October 24, 2023
    Assignee: Cornell University
    Inventors: Gennady Shvets, Shourya Dutta Gupta
  • Patent number: 11797207
    Abstract: Systems and methods herein provide for data deduplication in memory. In one embodiment, an Input/Output (I/O) module is operable to process a write I/O request to the memory, and to extract data of the write I/O request. A data deduplication module is operable to access a table to identify a first portion of the data of the write I/O request that is stored at a first address of the memory, to assign a pointer to the first portion of the data in the table, to identify a second portion of the data of the write I/O request that is not stored in memory, and to direct the second portion of the data of the write I/O request to be written to a second address of the memory.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: October 24, 2023
    Assignee: CORNELL UNIVERSITY
    Inventors: Sungbo Park, Gookwon Edward Suh
  • Patent number: 11788869
    Abstract: Waveguides, such as light guides, made entirely of elastomeric material or with indents on an outer surface are disclosed. These improved waveguides can be used in scissors, soft robotics, or displays. For example, the waveguides can be used in a strain sensor, a curvature sensor, or a force sensor. In an instance, the waveguide can be used in a hand prosthetic. Sensors that use the disclosed waveguides and methods of manufacturing waveguides also are disclosed.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: October 17, 2023
    Assignee: Cornell University
    Inventors: Robert Shepherd, Huichan Zhao, Rukang Huang, Hedan Bai, Shuo Li
  • Publication number: 20230320375
    Abstract: A system and method for rapidly preparing ice cream or other frozen food/beverage products at a point-of-sale/consumption is provided. For example, the apparatus and method are suited to freeze liquid ice cream mix and distribute it at a predetermined temperature and with a smooth consistency and texture.
    Type: Application
    Filed: August 31, 2021
    Publication date: October 12, 2023
    Applicant: CORNELL UNIVERSITY
    Inventors: Syed S.H. RIZVI, Richard HEBB
  • Publication number: 20230326984
    Abstract: A vertical gallium oxide (Ga2O3) device having a substrate, an n-type Ga2O3 drift layer on the substrate, an, n-type semiconducting channel extending from the n-type Ga2O3 drift layer, the channel being one of fin-shaped or nanowire shaped, an n-type source layer disposed on the channel; the source layer has a higher doping concentration than the channel, a first dielectric layer on the n-type Ga2O3 drift layer and on sidewalls of the n-type semiconducting channel, a conductive gate layer deposited on the first dielectric layer and insulated from the n-type source layer, n-type semiconducting channel as well as n-type Ga2O3 drift layer, a second dielectric layer deposited over the conductive gate layer, covering completely the conductive gate layer on channel sidewalls and an ohmic source contact deposited over the n-type source layer and over at least a part of the second dielectric layer; the source contact being configured not to be in electrical contact with the conductive gate layer.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Applicant: Cornell University
    Inventors: Zongyang Hu, Kazuki Nomoto, Grace Huili Xing, Debdeep Jena, Wenshen Li
  • Publication number: 20230320611
    Abstract: Quantitative susceptibility mapping methods, systems and computer-accessible medium generate images of tissue magnetism property from complex magnetic resonance imaging data using the Bayesian inference approach, which minimizes a cost function comprising of a data fidelity term and regularization terms. The data fidelity term is constructed directly from the multiecho complex magnetic resonance imaging data. The regularization terms include a prior constructed from matching structures or information content in known morphology, and a prior constructed from regions of low susceptibility contrasts characterized on image features. The quantitative susceptibility map can be determined by minimizing the cost function that involves nonlinear functions in modeling the obtained signals, and the corresponding inverse problem is solved using nonconvex optimization using a scaling approach or deep neural network.
    Type: Application
    Filed: August 19, 2021
    Publication date: October 12, 2023
    Applicant: Cornell University
    Inventors: Yi Wang, Yan Wen, Ramin Jafari, Thanh Nguyen, Pascal Spincemaille, Junghun Cho, Qihao Zhang
  • Patent number: 11782047
    Abstract: A nanopore-containing substrate includes a substrate, a membrane on the substrate, and at least one nanoscale electronic element disposed on or embedded in the membrane. The membrane defines at least one nanopore. The nanoscale electronic element is aligned with one of the nanopores such that a shortest distance between an edge of the nanoscale electronic element and the edge of the nanopore is less than 50 nm. The nanopores may be formed by etching through a dielectric layer using a solution while applying a voltage to the nanoscale electronic element relative to the solution. The nanopore-containing substrate can be used to detect or sequence a biopolymer, such as a nucleic acid. The nanopore-containing substrate may be used with a biopolymer detection and/or sequencing system.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: October 10, 2023
    Assignee: CORNELL UNIVERSITY
    Inventors: Jonathan Alden, Alejandro Cortese, Arthur Barnard, Paul McEuen
  • Patent number: 11781188
    Abstract: The present disclosure is directed to methods of detecting cell-free DNA (cfDNA) in biological samples and using it to quantify organ damage and identify pathogens. In some aspects, the biological samples are from patients who have undergone solid-organ transplantation. The disclosure is also directed to methods of detecting and analyzing methylation patterns in cell-free DNA from organ transplant patients to identify the presence of pathogens as well as quantify contributing tissue proportions as a measurement of the host response.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: October 10, 2023
    Assignee: CORNELL UNIVERSITY
    Inventors: Iwijn De Vlaminck, John Richard Lee, Philip Smith Burnham, Alexandre Pellan Cheng, Manikkam Suthanthrian, Darshana Dadhania
  • Patent number: 11782063
    Abstract: A method to detect local antibodies such as antigen-specific IgE via a brush biopsy specimen of a mucosal surface of a subject is disclosed. The method is easily performed in an office setting on both adult and pediatric patients. Also disclosed is a brush device specially designed for harvesting materials from a mucosal surface such as the medial surface of the inferior turbinate.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: October 10, 2023
    Assignee: CORNELL UNIVERSITY
    Inventor: William Reisacher
  • Patent number: 11782112
    Abstract: Exemplary methods for quantitative mapping of physical properties, systems and computer-accessible medium can be provided to generate images of tissue magnetic susceptibility, transport parameters and oxygen consumption from magnetic resonance imaging data using the Bayesian inference approach, which minimizes a data fidelity term under a constraint of a structure prior knowledge. The data fidelity term is constructed directly from the magnetic resonance imaging data. The structure prior knowledge can be characterized from known anatomic images using image feature extraction operation or artificial neural network. Thus, according to the exemplary embodiment, system, method and computer-accessible medium can be provided for determining physical properties associated with at least one structure.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: October 10, 2023
    Assignee: Cornell University
    Inventors: Yi Wang, Zhe Liu, Jinwei Zhang, Qihao Zhang, Junghun Cho, Pascal Spincemaille
  • Patent number: 11779028
    Abstract: The present disclosure relates to, inter alfa, processes for improving shelf-life and flavoring of fresh-cut/fresh vegetables, as well as food products produced by these processes. In accordance with the present disclosure, the processes generally include various new combinations of steps such as blanching, air drying, supercritical fluid processing with and without a processing aid, pressurization, de-pressurization, and packaging. The present disclosure further relates to methods of preparing edible food products that incorporate the processed fresh-cut vegetables, as well as the food products produced by these methods.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: October 10, 2023
    Assignee: CORNELL UNIVERSITY
    Inventors: Syed S. H. Rizvi, Vipul Prakash Saran
  • Publication number: 20230310378
    Abstract: Provided are methods of increasing a response to a chemotherapeutic agent or an immunotherapeutic agent in a patient in need thereof, and methods of treating cancer in a patient in need thereof, comprising administering to the patient a chemotherapeutic agent or an immunotherapeutic agent and a metastasis inhibiting compound, as described in this disclosure.
    Type: Application
    Filed: May 23, 2023
    Publication date: October 5, 2023
    Applicants: NOVITA PHARMACEUTICALS, INC., CORNELL UNIVERSITY
    Inventors: Xin-Yun HUANG, Jue Jillian ZHANG, Christy Young Shue
  • Patent number: 11773948
    Abstract: A transmission is presented, including a spool having a bore. An outer member disposed on the spool, and a cord is configured to at least partially wrap around the outer member. The outer member is configured to constrict and unconstrict to a force applied to the outer member. In this way, rotation of the spool causes a tension force to be applied to the cord, and a greater tension force in the cord will cause the outer member to constrict more than a lower tension force in the cord.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: October 3, 2023
    Assignee: Cornell University
    Inventors: Kevin W. O'Brien, Robert F. Shepherd
  • Patent number: 11769928
    Abstract: Provided herein are ceramic nanofibers and processes for preparing the same. In specific examples, provided herein are ceramic nanofiber mats for use as separators in batteries, particularly lithium ion batteries. In some embodiments, the separators described herein may include a nanofiber mat including at least one nanofiber having a continuous matrix material.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 26, 2023
    Assignee: Cornell University
    Inventors: Yong Lak Joo, Daehwan Cho, Yong Seok Kim
  • Patent number: 11769070
    Abstract: Technologies for a quantum/classical hybrid approach to solving optimization problems is disclosed. In the illustrative embodiment, an optimization problem is decomposed into two sub-problems. The first sub-problem is solved on a classical computer, and a result from the first sub-problem is provided to a quantum computer. The quantum computer then solves the second sub-problem based on the result of the first sub-problem from the classical computer. The quantum computer can then provide a result to the classical computer to re-solve the first problem. The iterative calculation is continued until an end condition is met.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: September 26, 2023
    Assignee: Cornell University
    Inventors: Fengqi You, Akshay Ajagekar
  • Publication number: 20230295588
    Abstract: Disclosed herein are methods for selecting a patient suffering from fungal-associated intestinal inflammation for treatment with an IL-1 pathway inhibitor, including inflammasome-blocking drugs based on the presence of candidalysin-secreting C. albicans strains in gut tissue.
    Type: Application
    Filed: December 7, 2022
    Publication date: September 21, 2023
    Applicant: Cornell University
    Inventors: Iliyan D. Iliev, Xin Li
  • Patent number: 11759146
    Abstract: The clinical diagnosis and monitoring of patients with neurological conditions may be established through behavioral examinations, assessments or evaluations, or neuroimaging scans. The system and methods described herein diagnose the cognitive function of a subject by measuring the neural response of the subject to one or more naturalistic sensory stimuli. The system measures the subject's sensory evoked response to the naturalistic sensory stimuli by computing the statistical comparison between the subject's neural signal and either the raw stimulus signal or the stimulus' signal envelope. A latency value, or other signal feature, is extracted from the subject's sensory evoked response and a diagnosis of the subject's cognitive function is then made based on the identified latency value or other extracted signal feature.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: September 19, 2023
    Assignee: Cornell University
    Inventors: Nicholas Schiff, Chananel Braiman, Chagit Reichenbach
  • Patent number: 11764804
    Abstract: Systems and methods herein provide for adaptive subband compression of power signals in a power system. In one embodiment, a system includes an encoder is operable to partition sensor measurements into frequency subbands (e.g., including an interharmonic subband), centered at integer multiples of the power system's fundamental frequency (e.g., 50 Hz or 60 Hz). The encoder may also be operable to detect active subbands, and to compress the at least one active subband. The system also includes a data concentrator operable to transmit the at least one compressed subband to a processor for analysis. The system also includes a decoder at a processing location (a substation, a concentrator, or the control center) operable to parse the compressed waveforms into subbands, to interpolate and decompress at least one compressed subband, and to synthesize the decompressed subbands as an approximation of the original waveform (e.g., subject to reconstruction error requirements).
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: September 19, 2023
    Assignee: CORNELL UNIVERSITY
    Inventors: Lang Tong, Xinyi Wang
  • Publication number: 20230285499
    Abstract: The disclosure provides methods of preventing or treating heart failure in a mammalian subject. The methods comprise administering to the subject an effective amount of an aromatic-cationic peptide to subjects in need thereof.
    Type: Application
    Filed: December 12, 2022
    Publication date: September 14, 2023
    Applicants: Cornell University, University of Washington
    Inventors: Hazel H. Szeto, Peter S. Rabinovitch, Dao-Fu Dai
  • Publication number: 20230285967
    Abstract: The present invention relates to, inter alia, a microfluidic device for capturing target cells and analyzing genomic DNA isolated from the target cells while under flow conditions. The microfluidic device includes a cell microchannel and a nucleic acid microchannel that intersect in an orthogonal manner, thereby forming a cell capture intersection region. The microfluidic device also includes a cell capture array and a nucleic acid entanglement array. The cell capture array includes a plurality of cell capturing micropillars and is located in the cell capture intersection region. The nucleic acid entanglement array includes a plurality of nucleic acid entanglement micropillars that function to physically entangle and maintain thereon genomic DNA isolated from the one or more target cell, and is located in a portion of the nucleic acid microchannel that is adjacent to and downstream of the cell capture intersection region. Methods of using the microfluidic device are also disclosed.
    Type: Application
    Filed: February 23, 2023
    Publication date: September 14, 2023
    Applicant: CORNELL UNIVERSITY
    Inventors: Harold G. CRAIGHEAD, Sarah J. REINHOLT