Patents Assigned to Corvita Corporation
  • Patent number: 6348066
    Abstract: Modular endoluminal stent-grafts include at least two different sized stent-grafts which are deployed one within the other. According to one embodiment of the invention, a first stent-graft is provided having a flared end which is expandable to a first diameter and a midsection which is expandable to a second diameter smaller than the first diameter. A second stent-graft is also provided having an end which is expandable to a diameter which engages the midsection of the first stent-graft. The first embodiment of the invention is deployed by expanding the first stent-graft such that its flared end engages a large diameter vessel, then expanding the second stent-graft inside the midsection of the first stent graft and inside a small diameter vessel such that the second stent graft engages the small diameter vessel and the midsection of the first stent-graft.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: February 19, 2002
    Assignee: Corvita Corporation
    Inventors: Leonard Pinchuk, Jean-Pierre Dereume
  • Patent number: 6309413
    Abstract: An endoluminal graft which is both expandable and supportive is provided either in a longitudinal form or in a bifurcated form. The graft expands between a first diameter and a second, larger diameter. The support component is an expandable stent endoprosthesis. A cover, liner, or a liner, or both a cover and a liner are applied to the endoprosthesis in the form of a stretchable wall material that is porous, elastomeric and biocompatible in order to allow normal cellular invasion upon implantation, without stenosis, when the expandable and supportive graft is at its second diameter. Preferably, the elastomeric wall material is a polycarbonate urethane.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: October 30, 2001
    Assignee: Corvita Corporation
    Inventors: Jean-Pierre Georges Emile Dereume, David C. MacGregor, Leonard Pinchuk
  • Patent number: 6273895
    Abstract: An apparatus and method are disclosed for measuring the desired length of a prosthetic device which is to be implanted in a body cavity of a patient. The apparatus generally includes a helically coiled stent formed of a resiliently-deformable material, a plunger which is connected to the proximal end of the stent, a sheath which slides over the plunger and stent when the plunger and sheath are used to insert and removably deploy the stent into the body cavity, and a scale for measuring an indication of the length of the stent once removably deployed in the body cavity. Proximal movement of the sheath to partially deploy the stent causes a length to be indicated on the scale. According to the method of the invention, the helically coiled stent of the apparatus is placed and partially deployed within the body cavity by use of the plunger and sheath of the apparatus. Once the stent bridges the body cavity, the scale of the apparatus is used to determine the length of the deployed stent.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: August 14, 2001
    Assignee: Corvita Corporation
    Inventors: Leonard Pinchuk, David C. MacGregor
  • Patent number: 6254633
    Abstract: A delivery device for delivering an implantable, radially expandable medical device having a constricted region for occluding fluid flow to a desired location in a body lumen. The delivery device includes an outer sleeve, an inner tube terminating at its distal end in a plunger, and a tapered guide member. In one embodiment, the tapered guide member is attached to and extends away from the constricted region of the occlusion device, and is thus implanted in the body lumen along with the occlusion device upon deployment of the occlusion device at the desired treatment location. In a second embodiment, the tapered guide member is integrated into the constricted region of the occlusion device. In a third embodiment, an inflatable balloon is positioned distally of the medical device, and when inflated provides a tapered guide surface that eases the navigation of the delivery device through the body lumen.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: July 3, 2001
    Assignee: Corvita Corporation
    Inventors: Leonard Pinchuk, John B. Martin, Jr.
  • Patent number: 6237460
    Abstract: A self-expanding stent for a medical device to be introduced into a cavity of a human body, is disclosed and includes a radially expandable and axially retractable tubular body (1), characterized in that the tubular body comprises first flexible rigid filaments (2, 3) which are arranged side by side in a number at least equal to two, wound along a first helicoid direction around a longitudinal axis (4) of the tubular body, and second flexible rigid filaments (5, 6) which are arranged side by side in a number at least equal to two, wound along a second helicoid direction opposite to the first, each multiple filament wound in one of the said directions crossing multiple filaments wound in the other direction according to a plaited arrangement. Methods for reproducibly forming the stent of the invention are disclosed.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: May 29, 2001
    Assignee: Corvita Corporation
    Inventor: Noureddine Frid
  • Patent number: 6197240
    Abstract: An article of manufacture and method of making and implanting the article made of a polyolefin star or linear copolymer are disclosed in which the polyolefin copolymer is biostable and crack-resistant when implanted in vivo. The polyolefin copolymer is the reaction product of a rubbery component which when homopolymerized produces a polymer having a low level of hardness, and a hardening component which when homopolymerized produces a polymer having a high level of hardness. The polyolefin copolymer is elastomeric, has a hardness intermediate the low and high levels of hardness, and has a backbone in which the majority of polymer linkages along the copolymer chain are alternating quaternary and secondary carbon atoms.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: March 6, 2001
    Assignee: Corvita Corporation
    Inventor: Leonard Pinchuk
  • Patent number: 6165212
    Abstract: An endoluminal graft which is both expandable and supportive is provided either in a longitudinal form or in a bifurcated form. The graft expands between a first diameter and a second, larger diameter. The support component is an expandable stent endoprosthesis. A cover, liner, or a liner, or both a cover and a liner are applied to the endoprosthesis in the form of a stretchable wall material that is porous, elastomeric and biocompatible in order to allow normal cellular invasion upon implantation, without stenosis, when the expandable and supportive graft is at its second diameter. Preferably, the elastomeric wall material is a polycarbonate urethane.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: December 26, 2000
    Assignee: Corvita Corporation
    Inventors: Jean-Pierre Georges Emile Dereume, David C. MacGregor, Leonard Pinchuk
  • Patent number: 6102939
    Abstract: An article of manufacture and method of making and implanting the article made of a polyolefin star or linear copolymer are disclosed in which the polyolefin copolymer is biostable and crack-resistant when implanted in vivo. The polyolefin copolymer is the reaction product of a rubbery component which when homopolymerized produces a polymer having a low level of hardness, and a hardening component which when homopolymerized produces a polymer having a high level of hardness. The polyolefin copolymer is elastomeric, has a hardness intermediate the low and high levels of hardness, and has a backbone in which the majority of polymer linkages along the copolymer chain are alternating quaternary and secondary carbon atoms.
    Type: Grant
    Filed: October 15, 1997
    Date of Patent: August 15, 2000
    Assignee: Corvita Corporation
    Inventor: Leonard Pinchuk
  • Patent number: 5948018
    Abstract: An endoluminal graft which is both expandable and supportive is provided either in a longitudinal form or in a bifurcated form. The graft expands between a first diameter and a second, larger diameter. The support component is an expandable stent endoprosthesis. A cover, liner, or a liner, or both a cover and a liner are applied to the endoprosthesis in the form of a stretchable wall material that is porous, elastomeric and biocompatible in order to allow normal cellular invasion upon implantation, without stenosis, when the expandable and supportive graft is at its second diameter. Preferably, the elastomeric wall material is a polycarbonate urethane.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: September 7, 1999
    Assignee: Corvita Corporation
    Inventors: Jean-Pierre Georges Emile Dereume, David C. MacGregor, Leonard Pinchuk
  • Patent number: 5928258
    Abstract: An apparatus for loading a self-expanding prosthesis into a delivery sheath includes a substantially cylindrical cartridge for receiving the prosthesis and a cartridge un-loading device for removing the prosthesis from the cartridge and loading it into a delivery sheath. The cartridge is provided with an exterior radial key at one end. The unloading device includes a substantially cylindrical member having an interior stationary coaxial piston extending substantially its entire length and an exterior sliding ring. The cylindrical member is provided with a radial slot which restricts movement of the sliding ring, and a stepped internal stop at one end. The stepped internal stop has a radial keyway which is dimensioned to receive the key on the cartridge. The sliding ring is provided with a radial pin which resides in the radial slot in the cylindrical member and which couples the sliding ring to an interior key engaging member with a locking keyway dimensioned to engage the key on the cartridge.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: July 27, 1999
    Assignee: Corvita Corporation
    Inventors: I. John Khan, Leonard Pinchuk, John B. Martin, Jr.
  • Patent number: 5871538
    Abstract: A luminal endovascular graft or endoprosthesis having a tubular support which expands between a first diameter and a second, larger diameter is provided with an expandable porous coating which is applied over either or both of the internal cylindrical surface and the external cylindrical surface of the tubular support. The first diameter allows the introduction of the luminal endoprosthesis into human or animal body passages. The expandable coating preferably is made from biocompatible fibers formed into a structure which allows normal cellular invasion upon implantation, without stenosis or restenosis, when the support element is at its second diameter.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: February 16, 1999
    Assignee: Corvita Corporation
    Inventor: Jean-Pierre Georges Emile Dereume
  • Patent number: 5855598
    Abstract: An endoluminal graft which is both expandable and supportive is provided in a form suitable for use in a branched body vessel location. The graft expands between a first diameter and a second, larger diameter. The support component is an expandable stent endoprosthesis. A liner is applied to the endoprosthesis in the form of a compliant wall material that is porous and biocompatible in order to allow normal cellular invasion upon implantation, without stenosis, when the expandable and supportive graft is at its second diameter. The supportive endoluminal graft is preferably provided as a plurality of components that are deployed separately at the branching body vessel location, one of which has a longitudinal seam defining leg portions within which the other components fit in a telescoping manner.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: January 5, 1999
    Assignee: Corvita Corporation
    Inventor: Leonard Pinchuk
  • Patent number: 5849037
    Abstract: A self-expanding stent for a medical device to be introduced into a cavity of a human body, is disclosed and includes a radially expandable and axially retractable tubular body (1), characterized in that the tubular body comprises first filaments (2, 3) which are arranged side by side in a number at least equal to two, wound along a first helicoid direction around a longitudinal axis (4) of the tubular body, and second flexible rigid filaments (5, 6) which are arranged side by side in a number at least equal to two, wound along a second helicoid direction opposite to the first, each multiple filament wound in one of the said directions crossing multiple filaments wound in the other direction according to a plaited arrangement. Methods for reproducibly forming the stent of the invention are disclosed.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: December 15, 1998
    Assignee: Corvita Corporation
    Inventor: Noureddine Frid
  • Patent number: 5804318
    Abstract: New and improved lubrifying coatings for reducing the coefficients of friction of surfaces on medical devices include hydrophilic copolymers derived monoethylenically-unsaturated monomers including some monomers having pendant primary amine functionality and some monomers having pendant tertiary amine functionality. The lubricious hydrogel coatings are covalently bondable to epoxy functionalized surfaces on the medical equipment to provide firmly adherent hydrogel coatings that are slippery when wet. Epoxy functionalized surfaces are provided by epoxy functional or epoxy group containing silane coupling agents. The pendant tertiary amine moieties are readily convertible at alkaline pH to quaternary ammonium cations to which anionic anti-thrombogenic agents may be bonded. Three dimensional copolymer matrices may also be provided as coatings on the surfaces by crosslinking the copolymers before or after attachment to the surface being treated.
    Type: Grant
    Filed: October 26, 1995
    Date of Patent: September 8, 1998
    Assignee: Corvita Corporation
    Inventors: Leonard Pinchuk, Yasushi P. Kato
  • Patent number: 5755774
    Abstract: A luminal graft endoprosthesis or endovascular graft is described which is capable of dilation and support functions and as suitable for the endoluminal repair of vascular lesions and the like. An expandable support or stent is combined with a tubular graft made of a material having two unstressed conditions to provide a combined stent-graft wherein the graft material is secured to either or both of the internal and external surfaces of the stent. The stent-graft may be positioned within a blood vessel of a living patient by an expandable balloon catheter. The graft member is made from a biocompatible material which, when expanded, exceeds its yield point and becomes dimensionally stable without retaining significant residual forces which may cause the stent to collapse after its placement within a blood vessel.
    Type: Grant
    Filed: August 22, 1996
    Date of Patent: May 26, 1998
    Assignee: Corvita Corporation
    Inventor: Leonard Pinchuk
  • Patent number: 5741331
    Abstract: An article of manufacture and method of making and implanting the article made of a polyolefin star or linear copolymer are disclosed in which the polyolefin copolymer is biostable and crack-resistant when implanted in vivo. The polyolefin copolymer is the reaction product of a rubbery component which when homopolymerized produces a polymer having a low level of hardness, and a hardening component which when homopolymerized produces a polymer having a high level of hardness. The polyolefin copolymer is elastomeric, has a hardness intermediate the low and high levels of hardness, and has a backbone in which the majority of polymer linkages along the copolymer chain are alternating quaternary and secondary carbon atoms.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: April 21, 1998
    Assignee: Corvita Corporation
    Inventor: Leonard Pinchuk
  • Patent number: 5741333
    Abstract: A self-expanding stent is provided for introduction into a cavity of a human body. The stent has a tubular body which is radially expansible and axially retractable between a working state and a resting state. The tubular body has first and second plaited filaments which provide a middle portion of a first diameter and two flared end portions of increasingly larger diameter as they extend away from the middle portion. Each flared end portion has an axial length along a longitudinal axis of the stent which is greater than an axial length of the portion of minimal diameter. Preferably, the middle portion is a single location, with the diameter of the stent increasing in both directions from that location to the ends of the stent. Different shaped stents are disclosed, including stents having generatrices taking the form of line segments angled relative to the longitudinal axis, and generatrices taking the form of a hyperbola segment or a circle arc segment.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: April 21, 1998
    Assignee: Corvita Corporation
    Inventor: Noureddine Frid
  • Patent number: 5736251
    Abstract: Lubricious silicone surface modifying treatments and/or coatings for modifying the frictional or slip surface characteristics of shaped elastomeric articles are provided in surface modifications including a coating or surface modifying composition comprising: ##STR1## wherein R is selected from unsubstituted and halogen-substituted aliphatic, cycloaliphatic, aromatic and alkyl aromatic groups having less than or equal to about ten carbon atoms, R.sup.1 is independently selected from hydrogen, hydroxyl, halogen, alkoxy and acyloxy groups, R.sup.2 is independently selected from hydrogen, alkyl and halogen-substituted alkyl groups, n is an integer of 1 to 3 inclusive, and m=3-n. The cured, highly crosslinked, three dimensional silicone coatings are effective at reducing the coefficient of friction of surfaces of shaped elastomeric articles, such as those frequently used in medical devices, by a factors of from about 50% to about 80% as compared with the same uncoated substrates.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: April 7, 1998
    Assignee: Corvita Corporation
    Inventor: Leonard Pinchuk
  • Patent number: 5723004
    Abstract: An endoluminal graft which is both expandable and supportive is provided either in a longitudinal form or in a bifurcated form. The graft expands between a first diameter and a second, larger diameter. The support component is an expandable stent endoprosthesis. A cover, liner, or a liner, or both a cover and a liner are applied to the endoprosthesis in the form of a stretchable wall material that is porous, elastomeric and biocompatible in order to allow normal cellular invasion upon implantation, without stenosis, when the expandable and supportive graft is at its second diameter. Preferably, the elastomeric wall material is a polycarbonate urethane.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: March 3, 1998
    Assignee: Corvita Corporation
    Inventors: Jean-Pierre Georges Emile Dereume, David C. MacGregor, Leonard Pinchuk
  • Patent number: 5700269
    Abstract: An endoluminal prosthesis deployment device includes a hollow plunger which is slideably mounted on a narrow inner catheter and an outer sheath through which the catheter and the plunger are slideable. The distal end of the plunger is provided with a soft retractor bulb and the distal end of the inner catheter is provided with a dilator tip. The proximal end of the plunger is provided with a locking mechanism for temporarily locking the relative positions of the plunger and the catheter and the proximal end of the outer sheath is provided with a locking mechanism for temporarily locking the relative positions of the plunger and outer sheath. The deployment device according to the invention accommodates protheses of different length by adjusting the distance between the distal end of the plunger and the dilator tip. This distance is adjusted by moving the plunger and/or the catheter relative to each other and locking their relative positions with the locking mechanism on the plunger.
    Type: Grant
    Filed: November 13, 1995
    Date of Patent: December 23, 1997
    Assignee: Corvita Corporation
    Inventors: Leonard Pinchuk, Kevin J. Clair