Patents Assigned to Cosemi Technologies, Inc.
  • Patent number: 11057074
    Abstract: A data and power communication cable that provides galvanic isolation between data-signal related circuitry and power-signal related circuitry present at both ends of the cable. The cable includes a first connector configured to mate with a first device to receive data and power signals therefrom; a first galvanic-isolating device configured to generate a galvanic-isolated data signal based on the data signal; a second galvanic-isolating device configured to generate a galvanic-isolated power signal based on the power signal; a second connector configured to mate with a second device to provide the galvanic-isolated data signal and the galvanic-isolated power signal thereto; a first set of communication mediums to route the data signal or the galvanic-isolated data signal from the first connector to the second connector; and a second set of communication mediums to route the power signal or the galvanic-isolated power signal from the first connector to the second connector.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: July 6, 2021
    Assignee: COSEMI TECHNOLOGIES, INC.
    Inventors: Devang Parekh, David Miller
  • Patent number: 10811844
    Abstract: Provided is an external cavity laser (ECL) including a vertical cavity surface emitting laser (VCSEL)-Distributed Bragg Reflector (DBR) type light emitting unit configured to receive a current and emit light, and including a DBR function layer and an active layer for a quantum well formed on one side of this DBR function layer, and an optical circuit unit including a light guide in which one end surface is installed to face an active layer at one side of the active layer, light generated from the active layer is received and guided, and an optical axis is formed vertically to an active layer plane, a reflection pattern that is formed at one side of the light guide so as to receive light output from the other end of the light guide to reflect the light again to the light guide, and an external layer for surrounding the light guide and the reflection pattern, wherein the VCSEL-DBR type light emitting unit and the optical circuit unit are mutually coupled to each other.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: October 20, 2020
    Assignee: Cosemi Technologies, inc.
    Inventor: Chang Joon Chae
  • Patent number: 10734768
    Abstract: A data communication cable assembly including a cable with wire and/or optical fiber communication mediums for transmitting data signals and/or power signals, and connectors for connecting to a pair of devices, respectively. Each of the connector includes a connector plug or receptacle configured to mate with a corresponding receptacle or plug of a device, wherein the connector plug or receptacle includes a set of electrical contacts configured to send and/or receive the data signals and/or power signals to and/or from the device; a metallic shell defining an enclosure and including first and second openings, wherein the connector plug or receptacle mate is configured to mate with the corresponding receptacle or plug of the device via the first opening, and wherein the cable extends from inside to outside of the enclosure via the second opening; and electrically-conductive filler material configured to reduce electromagnetic leakage via the first and second openings.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: August 4, 2020
    Assignee: Cosemi Technologies, Inc.
    Inventors: HaiBin Lei, JianKai Gu, Atul Sharma
  • Patent number: 10326245
    Abstract: A data communication cable that is capable of informing a user via light signals regarding any operational status of the cable and/or devices to which the cable is connected. The data communication cable includes a first connector configured to connect to a first device; a second connector configured to connect to a second device; one or more communication mediums configured to route a data signal and/or a power signal between the first and second devices; and one or more illumination fibers configured to emit light. The cable may further include a light driver circuit configured to generate a drive signal for the one or more illumination fibers based on detecting one or more events. Such events may include the cable receiving power, data signal activity or loss of signal activity in the one or more communications mediums, authentication or other operations performed between the first and second devices.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 18, 2019
    Assignee: Cosemi Technologies, Inc.
    Inventors: Devang Parekh, Nguyen X. Nguyen
  • Patent number: 10247891
    Abstract: An optical communication mount configured for surface mounting of optical transmitters, receivers or transceivers. The mount includes a housing having holes extending from the back side to the front side of the housing. The mount includes a first set of electrically-conductive traces disposed on a bottom side of the housing for surface mounting the mount on a printed circuit board (PCB), and a second set of electrically-conductive traces disposed on the front side of the housing. The mount also includes optical fibers extending into the thru-holes from the back side of the housing. The mount includes photo devices substantially registered with the thru-holes at the front side of the housing in a manner to receive and/or transmit more optical signals by way of the optical fibers, wherein the photo devices are configured to receive bias voltages from the PCB by way of the first and second sets of electrically-conductive traces.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: April 2, 2019
    Assignee: Cosemi Technologies, Inc.
    Inventors: Wenbin Jiang, Chien-Yu Kuo, Nguyen X. Nguyen
  • Patent number: 9979479
    Abstract: A communications cable is disclosed. The cable includes a first circuit configured to receive electrical data signals from a data source via an input connector, and convert the electrical data signals into optical signals for transmission by way of one or more optical fibers. The cable includes a second circuit configured to convert the optical signals received via the one or more optical fibers back to electrical data signals for providing to a data sink via an output connector. The cable includes a third circuit for applying pre- and post-signal conditioning to bi-directional control data for transmission to and received from the data sink via wires. The cable includes a fourth circuit for applying pre- and post-signal conditioning to bi-directional control data for transmission to and received from the data source via wires. The pre- and post-signal conditioning compensate for capacitance and/or resistance effects on the signals introduced by the wires.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: May 22, 2018
    Assignee: cosemi technologies, inc.
    Inventors: Devang Parekh, Nguyen X. Nguyen, Chien-Yu Kuo
  • Patent number: 9979481
    Abstract: A bidirectional data communications cable is disclosed. The cable includes first connector, second connector, and cable housing coupled to the first and second connectors. The first connector includes a controller configured to determine whether the first connector is connected to a data source or data sink. If connected to a data source, the controller configures a switch circuit to route a data signal from the data source to an optical modulator for modulating an optical signal for transmission from the first to the second connector via an optical fiber. If connected to a data sink, the controller configures the switch circuit to route a data signal from an optical demodulator to the data sink, the optical demodulator receiving an optical signal modulated with the data signal from the second connector via an optical fiber. The second connector is configured similar to the first connector. The cable housing encloses the optical fibers.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 22, 2018
    Assignee: cosemi technologies, inc.
    Inventors: Devang Parekh, Nguyen X. Nguyen
  • Patent number: 9971115
    Abstract: A data communication system is disclosed including a cable medium and modulator adapted to carry data and power between a high speed data source and a high speed data sink. Relatively high speed data (e.g. the TMDS data of an HDMI interface) may be carried on optical waveguides in the cable medium. Relatively low-speed data (e.g., DDC data and clock, and CEC of an HDMI interface) may be carried on a separate set of optical waveguides or wire mediums. The optical waveguides allow for substantially less signal distortion of the high-speed data, thereby allowing the cable medium to achieve much higher lengths without significantly affecting the high-speed signaling.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: May 15, 2018
    Assignee: cosemi technologies, inc.
    Inventors: Wenbin Jiang, Chien-Yu Kuo, Nguyen X. Nguyen
  • Patent number: 9897648
    Abstract: Operational and functional testing of the optical Physical Media Dependent Integrated Circuits (“PMD ICs”) is achieved by constructing a switchable on-chip load with similar or equivalent electrical characteristics of a targeted photonic device.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: February 20, 2018
    Assignee: Cosemi Technologies, Inc.
    Inventors: Wu-Chun Chou, Michael Eugene Davis, Charles Phillip McClay
  • Patent number: 9843297
    Abstract: A balanced differential transimpedance amplifier with a single-ended input operational over a wide variation in the dynamic range of input signals. A threshold circuit is employed to either or a combination of (1) generate a varying decision threshold to ensure a proper slicing over a wide range of input current signal levels; and (2) generate a bias current and voltage applied to an input of a transimpedance stage to cancel out a dependence of the transimpedance stage voltage input on input current signal levels.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: December 12, 2017
    Assignee: Cosemi Technologies, Inc.
    Inventors: Robert Monroe Smith, Charles Phillip McClay
  • Patent number: 9813154
    Abstract: A bidirectional data communications cable is disclosed. The cable includes first connector, second connector, and cable housing coupled to the first and second connectors. The first connector includes a controller configured to determine whether the first connector is connected to a data source or data sink. If connected to a data source, the controller configures a switch circuit to route a data signal from the data source to an optical modulator for modulating an optical signal for transmission from the first to the second connector via an optical fiber. If connected to a data sink, the controller configures the switch circuit to route a data signal from an optical demodulator to the data sink, the optical demodulator receiving an optical signal modulated with the data signal from the second connector via an optical fiber. The second connector is configured similar to the first connector. The cable housing encloses the optical fibers.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 7, 2017
    Assignee: Cosemi Technologies, Inc.
    Inventors: Devang Parekh, Nguyen X. Nguyen
  • Patent number: 9813153
    Abstract: A communications cable is disclosed. The cable includes a first circuit configured to receive electrical data signals from a data source via an input connector, and convert the electrical data signals into optical signals for transmission by way of one or more optical fibers. The cable includes a second circuit configured to convert the optical signals received via the one or more optical fibers back to electrical data signals for providing to a data sink via an output connector. The cable includes a third circuit for applying pre- and post-signal conditioning to bi-directional control data for transmission to and received from the data sink via wires. The cable includes a fourth circuit for applying pre- and post-signal conditioning to bi-directional control data for transmission to and received from the data source via wires. The pre- and post-signal conditioning compensate for capacitance and/or resistance effects on the signals introduced by the wires.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: November 7, 2017
    Assignee: Cosemi Technologies, Inc.
    Inventors: Devang Parekh, Nguyen X. Nguyen, Chien-Yu Kuo
  • Patent number: 9641170
    Abstract: A power efficient device for driving a load comprising a low current path and a high current path, wherein the high current path is driven by a first voltage source. In order to accommodate larger turn on voltages of possible load devices while maintaining low power operation, an additional voltage source exceeding the voltage source in the high current path is introduced in the low current path.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: May 2, 2017
    Assignee: COSEMI TECHNOLOGIES, INC.
    Inventors: Wu-Chun Chou, Robert Monroe Smith, Iain Ross MacTaggart, John Joseph Stronczer, Charles Phillip McClay
  • Patent number: 9641250
    Abstract: A data communication system is disclosed including a cable medium and modulator adapted to carry data and power between a high speed data source and a high speed data sink. Relatively high speed data (e.g. the TMDS data of an HDMI interface) may be carried on optical waveguides in the cable medium. Relatively low-speed data (e.g., DDC data and clock, and CEC of an HDMI interface) may be carried on a separate set of optical waveguides or wire mediums. The optical waveguides allow for substantially less signal distortion of the high-speed data, thereby allowing the cable medium to achieve much higher lengths without significantly affecting the high-speed signaling.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: May 2, 2017
    Assignee: COSEMI TECHNOLOGIES, INC.
    Inventors: Wenbin Jiang, Chien-Yu Kuo, Nguyen X. Nguyen
  • Patent number: 9397750
    Abstract: A communications cable is disclosed. The cable includes a first circuit configured to receive electrical data signals from a data source via an input connector, and convert the electrical data signals into optical signals for transmission by way of one or more optical fibers. The cable includes a second circuit configured to convert the optical signals received via the one or more optical fibers back to electrical data signals for providing to a data sink via an output connector. The cable includes a third circuit for applying pre- and post-signal conditioning to bi-directional control data for transmission to and received from the data sink via wires. The cable includes a fourth circuit for applying pre-and post-signal conditioning to bi-directional control data for transmission to and received from the data source via wires. The pre- and post-signal conditioning compensate for capacitance and/or resistance effects on the signals introduced by the wires.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: July 19, 2016
    Assignee: COSEMI TECHNOLOGIES, INC.
    Inventors: Devang Parekh, Nguyen X. Nguyen, Chien-Yu Kuo
  • Patent number: 9397751
    Abstract: A bidirectional data communications cable is disclosed. The cable includes first connector, second connector, and cable housing coupled to the first and second connectors. The first connector includes a controller configured to determine whether the first connector is connected to a data source or data sink. If connected to a data source, the controller configures a switch circuit to route a data signal from the data source to an optical modulator for modulating an optical signal for transmission from the first to the second connector via an optical fiber. If connected to a data sink, the controller configures the switch circuit to route a data signal from an optical demodulator to the data sink, the optical demodulator receiving an optical signal modulated with the data signal from the second connector via an optical fiber. The second connector is configured similar to the first connector. The cable housing encloses the optical fibers.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: July 19, 2016
    Assignee: COSEMI TECHNOLOGIES, INC.
    Inventors: Devang Parekh, Nguyen X. Nguyen
  • Patent number: 8948197
    Abstract: A data communication system is disclosed including a cable medium and modulator adapted to carry data and power between a high speed data source and a high speed data sink. Relatively high speed data (e.g. the TMDS data of an HDMI interface) may be carried on optical waveguides in the cable medium. Relatively low-speed data (e.g., DDC data and clock, and CEC of an HDMI interface) may be carried on a separate set of optical waveguides or wire mediums. The optical waveguides allow for substantially less signal distortion of the high-speed data, thereby allowing the cable medium to achieve much higher lengths without significantly affecting the high-speed signaling.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: February 3, 2015
    Assignee: Cosemi Technologies, Inc.
    Inventors: Wenbin Jiang, Chien-Yu Kuo, Nguyen X. Nguyen
  • Publication number: 20130077640
    Abstract: A data communication system is disclosed including a cable medium and modulator adapted to carry data and power between a high speed data source and a high speed data sink. Relatively high speed data (e.g. the TMDS data of an HDMI interface) may be carried on optical waveguides in the cable medium. Relatively low-speed data (e.g., DDC data and clock, and CEC of an HDMI interface) may be carried on a separate set of optical waveguides or wire mediums. The optical waveguides allow for substantially less signal distortion of the high-speed data, thereby allowing the cable medium to achieve much higher lengths without significantly affecting the high-speed signaling.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 28, 2013
    Applicant: COSEMI TECHNOLOGIES, INC.
    Inventor: COSEMI TECHNOLOGIES, INC.
  • Patent number: 7505503
    Abstract: A vertical cavity surface emitting laser (VCSEL) is disclosed that has a relatively low vertical resistance between the Ohmic contact to the upper distributed Bragg reflector (DBR) and the active layer, and a structure to substantially confine the current flow to the laser cavity so that the VCSEL can produce a more efficient and substantially single-mode output. In particular, the VCSEL includes a substrate, a lower DBR disposed over the substrate, an active layer disposed over the lower DBR, and an upper DBR. The upper DBR includes a groove and an Ohmic contact situated within the groove to lower the vertical resistance between the contact and the active layer. An ion implanted layer is also formed along the side wall of the active layer to substantially confine the current flow to the laser cavity.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 17, 2009
    Assignee: Cosemi Technologies, Inc.
    Inventors: Nguyen X. Nguyen, Charles F. Krumm