Patents Assigned to CubicPV Inc.
  • Patent number: 11953821
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: April 9, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 11901177
    Abstract: A perovskite material that has a perovskite crystal lattice having a formula of CxMyXz, and alkyl polyammonium cations disposed within or at a surface of the perovskite crystal lattice; wherein x, y, and z, are real numbers; C comprises one or more cations selected from the group consisting of Group 1 metals, Group 2 metals, ammonium, formamidinium, guanidinium, and ethene tetramine; M comprises one or more metals each selected from the group consisting of Be, Mg, Ca, Sr, Ba, Fe, Cd, Co, Ni, Cu, Ag, Au, Hg, Sn, Ge, Ga, Pb, In, Tl, Sb, Bi, Ti, Zn, Cd, Hg, and Zr, and combinations thereof and X comprises one or more anions each selected from the group consisting of halides, pseudohalides, chalcogenides, and combinations thereof.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: February 13, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Michael Holland, Nicholas Anderson
  • Patent number: 11895906
    Abstract: A method for producing a perovskite material photovoltaic device, the method comprising: depositing a layer comprising a fullerene or fullerene derivative on a perovskite material; depositing a cross-linking agent on the perovskite material or the layer comprising the fullerene or fullerene derivative, wherein the cross-linking agent comprises a silane, wherein the silane is a halosilyalkane; and depositing one or more polymers on the perovskite material or the layer comprising the fullerene or fullerene derivative.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: February 6, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael David Irwin, Kamil Mielczarek, Nicholas Charles Anderson
  • Patent number: 11863122
    Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: January 2, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
  • Patent number: 11800726
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of preparing a bismuth halide precursor ink. Preparing a bismuth halide precursor ink comprises the steps of introducing a bismuth halide into a vessel; introducing a first solvent to the vessel; and contacting the bismuth halide with the first solvent to dissolve the bismuth halide to form the bismuth halide precursor ink; depositing the bismuth halide precursor ink onto a substrate; drying the bismuth halide precursor ink to form a thin film; annealing the thin film; and rinsing the thin film with a solvent comprising: a second solvent; a first salt selected from the group consisting of methylammonium halide, formamidinimum halide, guanidinium halide, 1,2,2-triaminovinylammonium halide, and 5-aminovaleric acid hydrohalide; and a second salt selected from the group consisting of methylammonium halide, formamidinimum halide, guanidinium halide, 1,2,2-triaminovinylammonium halide, and 5-aminovaleric acid hydrohalide.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: October 24, 2023
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
  • Patent number: 11713396
    Abstract: A method for preparing a nickel oxide precursor ink comprising: preparing a solvent comprising diols and alcohol amines; adding nickel nitrate into the solvent to form a nickel nitrate containing solution; adding at least one metal acetate into the nickel nitrate containing solution to form a nickel nitrate and metal acetate containing solution; adding water to the nickel nitrate and metal acetate containing solution to form a nickel oxide precursor mixture; heating the nickel oxide precursor mixture to 60 to 75 Celsius; and cooling the nickel oxide precursor mixture to form the nickel oxide precursor ink.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: August 1, 2023
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Erin Sanehira
  • Patent number: 11685666
    Abstract: A metal oxide nanoparticle comprises a metal oxide core of formula M2O5, wherein M is tantalum (V) or niobium (V) and alkylsiloxane ligands bonded to the metal oxide core. The alkylsiloxane ligands are selected from the group consisting of isobutylsiloxane, allylsiloxane, vinylsiloxane, n-propyl siloxane, n-butylsiloxane, sec-butyl siloxane, tert-butyl siloxane, phenylsiloxane, n-octylsiloxane, isooctylsiloxane n-dodecyl siloxane, 4 -(trimethyl silyl)phenylsiloxane, para-tolylsiloxane, 4-fluorophenyl siloxane, 4 -chlorophenyl siloxane, 4-bromophenyl siloxane, 4-iodophenylsiloxane, 4-cyanophenyl siloxane, benzylsiloxane, methylsiloxane, ethylsiloxane, 4-(trifluoromethyl)phenylsiloxane, 4 -ammoniumbutylsiloxane, and any combination thereof.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: June 27, 2023
    Assignee: CubicPV Inc.
    Inventors: Michael David Irwin, Marissa Lynn Higgins, Nicholas Charles Anderson
  • Patent number: 11659723
    Abstract: A method for manufacturing a photovoltaic device includes fabricating a first photovoltaic device portion with a first perovskite material layer having a first face, and fabricating a second photovoltaic device portion with a second perovskite material layer having a second face. Then first photovoltaic device portion and the second photovoltaic device portion are arranged such that the first face is in contact with the second face. Finally, the first photovoltaic device portion and second photovoltaic device portion are compressed at a pressure sufficient to fuse the first perovskite material to the second perovskite material.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: May 23, 2023
    Assignee: CubicPV Inc.
    Inventors: Michael Irwin, Michael Holland
  • Patent number: 11631582
    Abstract: A perovskite material that has a perovskite crystal lattice having a formula of CxMyXz, where x, y, and z, are real numbers, and 1,4-diammonium butane cation cations disposed within or at a surface of the perovskite crystal lattice. C comprises one or more cations selected from the group consisting of Group 1 metals, Group 2 metals, ammonium, formamidinium, guanidinium, and ethene tetramine. M comprises one or more metals each selected from the group consisting of Be, Mg, Ca, Sr, Ba, Fe, Cd, Co, Ni, Cu, Ag, Au, Hg, Sn, Ge, Ga, Pb, In, Tl, Sb, Bi, Ti, Zn, Cd, Hg, and Zr and combinations thereof. X comprises one or more anions each selected from the group consisting of halides, sulfides, selenides, and combinations thereof.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: April 18, 2023
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Michael Holland, Nicholas Anderson
  • Patent number: 11562920
    Abstract: A semiconductor wafer is as wide as the industry standard width A (presently 156 mm+/?1 mm) and is longer than the industry standard A by at least 1 mm and as much as the standard equipment can reasonably accommodate, presently approximately 3-20 mm and potentially longer, thus, gaining significant additional surface area for sunlight absorption. Modules may be composed of a plurality of such larger wafers. Such wafers can be processed in conventional processing equipment that has a wafer retaining portion of industry standard size A and a configuration that also accommodates a wafer with a perpendicular second edge longer than A by at least 1 and typically 3-20 mm. Wet bench carriers and transport and inspection stations can be so used.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: January 24, 2023
    Assignee: CUBICPV INC.
    Inventor: Robertus Antonius Steeman
  • Patent number: 11508924
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the step of preparing a germanium halide precursor ink. Preparing a germanium halide precursor ink comprises the steps of: introducing a germanium halide into a vessel, introducing a first solvent to the vessel, and contacting the germanium halide with the first solvent to dissolve the germanium halide. The method further comprises depositing the germanium halide precursor ink onto a substrate, drying the germanium halide precursor ink to form a thin film, annealing the thin film, and rinsing the thin film with a second solvent and a salt.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: November 22, 2022
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas
  • Patent number: 11387779
    Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: July 12, 2022
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
  • Patent number: 11300870
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: April 12, 2022
    Assignee: CUBICPV INC.
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 11264572
    Abstract: A method for producing an organic non-fullerene electron transport compound includes mixing naphthalene-1,4,5,8-tetracarboxylic dianhydride and an amine compound in dimethylformamide. The method also includes heating the mixture to a temperature greater than or equal to 70° and less than or equal to 160° C. for an amount of time greater than or equal to 1 hour and less than or equal to 24 hours. The method further includes isolating an organic non-fullerene electron transport compound reaction product.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: March 1, 2022
    Assignee: CubicPV Inc.
    Inventors: Michael David Irwin, Minh Tu Nguyen, Kamil Mielczarek