Patents Assigned to Cymbet Corporation
  • Patent number: 10921845
    Abstract: A real time clock and power management integrated circuit consists of a) an RTC block comprising an internal clock generator for generating a system clock signal that controls a device and b) a power management block. The power management block comprises primary and backup power source connections, a Feed Power Downconverter Component, a backup power source charger power booster/regulator component to increase or regulate voltage from the primary power source to a predetermined charger input voltage, a charge control logic component, a backup power source cut-off logic component, and a mode control logic component to enable operation of the charge control logic component and the battery cut-off logic component under predetermined conditions.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: February 16, 2021
    Assignee: CYMBET Corporation
    Inventors: Jeffrey S. Sather, Steve W. Tonkin, Jeffrey D. Mullin
  • Patent number: 10079403
    Abstract: Disclosed is a stacked array of a plurality of thin film batteries electrically connected in a staggered configuration, where the side edges of the array preferably generally conform to an interior surface of an electronic device or component thereof in order to save space. In an embodiment, the stacked array comprises at least one battery having a single surface in contact with a plurality of batteries. In another embodiment, a shaped array of a plurality of thin film batteries electrically are connected together, whereby a plurality of batteries are arranged in a single layer on a non-rectangular substrate adjacent to one another generally in the shape of the surface of the substrate. Additionally, a thin film battery is described having at least one via through the substrate and at least one other via through an insulation layer to provide electronic connection to the battery cell.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: September 18, 2018
    Assignee: CYMBET CORPORATION
    Inventors: Steven C. Grady, Jeffrey S. Sather, Blair A. Wilson
  • Patent number: 10020540
    Abstract: A thin film battery comprises a glass or ceramic substrate having a coefficient of thermal expansion (“CTE”) of from about 7 to about 10 ppm/° K, a continuous metal or metal oxide cathode current collector and having a thickness of less than about 3 micrometers, the cathode current collector being superjacent to the glass or ceramic substrate, a cathode material layer comprising lithium transition metal oxides that is a continuous film having a thickness of from about 10 to about 80 micrometers, the cathode material layer being superjacent to the cathode current collector, a LiPON electrolyte layer superjacent to the cathode material layer and having a thickness of from about 0.5 to about 4 micrometers, and an anode current collector with an optional anode material. Methods of making and using the batteries are described.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 10, 2018
    Assignee: CYMBET CORPORATION
    Inventors: Stuart Kevin Shakespeare, Stanley Jacob Stanislowski, Matthew E. Flatland, Stephen W. Downey, Morgan J. Thoma
  • Patent number: 9419463
    Abstract: A control system for charge and output control of a rechargeable thin film microbattery cell comprises a charge control logic component configured to control the level of charge of a thin film microbattery cell, a battery cut-off logic component to cease current draw on the thin battery thin film microbattery cell under predetermined conditions, a mode control logic component operably coupled to the charge control logic component and the battery cut-off logic component to enable operation of the charge control logic component and the battery cut-off logic component under predetermined conditions, and a Switch Capacitor DC-DC Downconverter Component for delivery of voltage external to the system configured to reduce battery output voltage potential by a factor of at least 2:1. Systems operably connected to a rechargeable thin film microbattery cell and powered devices comprising the system and the microbattery cell are also described.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: August 16, 2016
    Assignee: CYMBET CORPORATION
    Inventors: Jeffrey D. Mullin, Jeffrey S. Sather
  • Patent number: 9331501
    Abstract: A rechargeable thin film microbattery cell array of at least four thin film microbattery cells is electrically connected together in parallel to provide power as a single battery power source. The array further comprises testing logic to determine if a microbattery cell has a microbattery cell voltage that is more than a predetermined percentage different from the voltage of the overall microbattery cell array or has an absolute voltage below a predetermined cutoff threshold, and logic to disconnect any microbattery cell from the microbattery cell array if the microbattery cell has a microbattery cell voltage that is more than a predetermined percentage different from the voltage of the overall microbattery cell array or has an absolute voltage below a predetermined cutoff threshold. Embodiments also comprise a Switch Capacitor DC-DC downconverter component that reduces the voltage potential to operate some or all functionalities located on the integrated circuit.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: May 3, 2016
    Assignee: CYMBET CORPORATION
    Inventor: Jeffrey D. Mullin
  • Patent number: 8761842
    Abstract: A combined battery and wireless-communications apparatus and method. In some embodiments, the apparatus includes a support, a first conductive layer deposited on a first surface area of the support, a thin-film battery including a cathode layer, a solid-state electrolyte layer, and an anode layer deposited such that either the anode layer or the cathode layer is in electrical contact with the first conductive layer, an antenna mounted to the support structure, and an electronic communications circuit mounted to the support and electrically coupled to the battery and the antenna to transceive radio communications. Other embodiments include an energy-receiving device mounted to the support structure, and an electronic communications circuit mounted to the support structure and including a recharging circuit, the recharging circuit electrically coupled to the battery and the energy-receiving device to recharge the battery using energy received by the energy-receiving device.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: June 24, 2014
    Assignee: Cymbet Corporation
    Inventors: Harlan T. Jacobs, Mark L. Jenson, Jody J. Klaassen, Jenn-Feng Yan
  • Publication number: 20140145680
    Abstract: A control system for charge and output control of a rechargeable thin film microbattery cell comprises a charge control logic component configured to control the level of charge of a thin film microbattery cell, a battery cut-off logic component to cease current draw on the thin battery thin film microbattery cell under predetermined conditions, a mode control logic component operably coupled to the charge control logic component and the battery cut-off logic component to enable operation of the charge control logic component and the battery cut-off logic component under predetermined conditions, and a Switch Capacitor DC-DC Downconverter Component for delivery of voltage external to the system configured to reduce battery output voltage potential by a factor of at least 2:1. Systems operably connected to a rechargeable thin film microbattery cell and powered devices comprising the system and the microbattery cell are also described.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: CYMBET Corporation
    Inventors: Jeffrey D. Mullin, Jeffrey S. Sather
  • Publication number: 20140055085
    Abstract: A thin film battery and charging system is provided comprising a cathode material, a cathode current collector, an anode current collector, and an electrolyte layer separating the cathode material from the anode current collector configured to form a battery having at least one intercalating electrode. The system additionally comprises an integrated-circuit battery-charging and managing circuit and a user controlled input having selection capability for the user to choose from a plurality of levels of state of charge of the battery. A method of charging a thin film battery is also described.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 27, 2014
    Applicant: CYMBET CORPORATION
    Inventors: Stephen W. Downey, Nissa Inselman-Field
  • Patent number: 8637349
    Abstract: A combined battery and device apparatus and associated method. This apparatus includes a first conductive layer, a battery comprising a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, and an electrical circuit adjacent face-to-face to and electrically connected to the battery. Some embodiments further include a photovoltaic cell and/or thin-film capacitor. In some embodiments, the substrate includes a polymer having a melting point substantially below 700 degrees centigrade. In some embodiments, the substrate includes a glass. For example, some embodiments include a battery deposited directly on the back of a liquid-crystal display (LCD) device.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: January 28, 2014
    Assignee: Cymbet Corporation
    Inventors: Mark L. Jenson, Jody J. Klaassen
  • Publication number: 20130230646
    Abstract: A method for producing a thin film lithium battery is provided, comprising applying a cathode current collector, a cathode material, an anode current collector, and an electrolyte layer separating the cathode material from the anode current collector to a substrate, wherein at least one of the layers contains lithiated compounds that is patterned at least in part by a photolithography operation comprising removal of a photoresist material from the layer containing lithiated compounds by a process including a wet chemical treatment. Additionally, a method and apparatus for making lithium batteries by providing a first sheet that includes a substrate having a cathode material, an anode material, and a LiPON barrier/electrolyte layer separating the cathode material from the anode material; and removing a subset of first material to separate a plurality of cells from the first sheet.
    Type: Application
    Filed: April 12, 2013
    Publication date: September 5, 2013
    Applicant: CYMBET CORPORATION
    Inventors: Mark A. Wallace, Jody J. Klaassen, Jeffrey J. Sather, Stuart K. Shakespeare
  • Patent number: 8420252
    Abstract: A first current collector on the first surface of the substrate and a second current collector having a first surface and a perimeter. One of the first and second current collector is an anode current collector and the other is a cathode current collector. The battery also comprises a cathode material having a perimeter, the cathode material being located on the cathode current collector; an electrolyte layer having a perimeter, the electrolyte separating the cathode material from the anode current collector; an insulation layer having a perimeter, the insulation layer together with the electrolyte layer separating the anode current collector from the cathode material and the cathode current collector.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: April 16, 2013
    Assignee: Cymbet Corporation
    Inventors: Stuart Kevin Shakespeare, Stanley Jacob Stanislowski, Debra Ann Holmquist, Darren Kroells, Matthew Flatland, Theodore L. Flemmer, Steven J. McKinley
  • Publication number: 20130071729
    Abstract: A method and apparatus for making thin-film batteries having composite multi-layered electrolytes with soft electrolyte between hard electrolyte covering the negative and/or positive electrode, and the resulting batteries. In some embodiments, foil-core cathode sheets each having a cathode material (e.g., LiCoO2) covered by a hard electrolyte on both sides, and foil-core anode sheets having an anode material (e.g., lithium metal) covered by a hard electrolyte on both sides, are laminated using a soft (e.g., polymer gel) electrolyte sandwiched between alternating cathode and anode sheets. A hard glass-like electrolyte layer obtains a smooth hard positive-electrode lithium-metal layer upon charging, but when very thin, have randomly spaced pinholes/defects. When the hard layers are formed on both the positive and negative electrodes, one electrode's dendrite-short-causing defects on are not aligned With the other electrode's defects.
    Type: Application
    Filed: November 13, 2012
    Publication date: March 21, 2013
    Applicant: CYMBET CORPORATION
    Inventor: Cymbet Corporation
  • Publication number: 20130043731
    Abstract: A rechargeable thin film microbattery cell array of at least four thin film microbattery cells is electrically connected together in parallel to provide power as a single battery power source. The array further comprises testing logic to determine if a microbattery cell has a microbattery cell voltage that is more than a predetermined percentage different from the voltage of the overall microbattery cell array or has an absolute voltage below a predetermined cutoff threshold, and logic to disconnect any microbattery cell from the microbattery cell array if the microbattery cell has a microbattery cell voltage that is more than a predetermined percentage different from the voltage of the overall microbattery cell array or has an absolute voltage below a predetermined cutoff threshold. Embodiments also comprise a Switch Capacitor DC-DC downconverter component that reduces the voltage potential to operate some or all functionalities located on the integrated circuit.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 21, 2013
    Applicant: CYMBET CORPORATION
    Inventor: Jeffrey D. Mullin
  • Publication number: 20120274273
    Abstract: A combined battery and wireless-communications apparatus and method. In some embodiments, the apparatus includes a support, a first conductive layer deposited on a first surface area of the support, a thin-film battery including a cathode layer, a solid-state electrolyte layer, and an anode layer deposited such that either the anode layer or the cathode layer is in electrical contact with the first conductive layer, an antenna mounted to the support structure, and an electronic communications circuit mounted to the support and electrically coupled to the battery and the antenna to transceive radio communications. Other embodiments include an energy-receiving device mounted to the support structure, and an electronic communications circuit mounted to the support structure and including a recharging circuit, the recharging circuit electrically coupled to the battery and the energy-receiving device to recharge the battery using energy received by the energy-receiving device.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 1, 2012
    Applicant: CYMBET CORPORATION
    Inventors: Harlan Theodore Jacobs, Mark Lynn Jenson, Jody Jon Klaassen, Jenn-Feng Yan
  • Patent number: 8228023
    Abstract: A method and apparatus for a unitary battery and charging circuit. Also, having a power conversion system includes a variable charging source and an energy storage device. The power conversion circuit also includes a charging circuit coupled to the variable charging source and the energy storage device, the energy storage device being charged by the variable charging source. Further, the circuit includes an energy storage device isolation circuit configured to isolate the energy storage device from discharging when power from the variable charging source is below a predetermined threshold. Further still, the conversion circuit includes a restart circuit configured to restart the charging circuit by utilizing power from the energy storage device when charging power has dropped below a predetermined level.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: July 24, 2012
    Assignee: Cymbet Corporation
    Inventors: Jeffrey S. Sather, Roger L. Roisen, Jeffrey D. Mullin
  • Patent number: 8219140
    Abstract: A combined battery and wireless-communications apparatus and method. In some embodiments, the apparatus includes a support, a first conductive layer deposited on a first surface area of the support, a thin-film battery including a cathode layer, a solid-state electrolyte layer, and an anode layer deposited such that either the anode layer or the cathode layer is in electrical contact with the first conductive layer, an antenna mounted to the support structure, and an electronic communications circuit mounted to the support and electrically coupled to the battery and the antenna to transceive radio communications. Other embodiments include an energy-receiving device mounted to the support structure, and an electronic communications circuit mounted to the support structure and including a recharging circuit, the recharging circuit electrically coupled to the battery and the energy-receiving device to recharge the battery using energy received by the energy-receiving device.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: July 10, 2012
    Assignee: Cymbet Corporation
    Inventors: Harlan T. Jacobs, Mark L. Jenson, Jody J. Klassen, Jenn-Feng Yan
  • Publication number: 20110300413
    Abstract: A combined battery and wireless-communications apparatus and method. In some embodiments, the apparatus includes a support, a first conductive layer deposited on a first surface area of the support, a thin-film battery including a cathode layer, a solid-state electrolyte layer, and an anode layer deposited such that either the anode layer or the cathode layer is in electrical contact with the first conductive layer, an antenna mounted to the support structure, and an electronic communications circuit mounted to the support and electrically coupled to the battery and the antenna to transceive radio communications. Other embodiments include an energy-receiving device mounted to the support structure, and an electronic communications circuit mounted to the support structure and including a recharging circuit, the recharging circuit electrically coupled to the battery and the energy-receiving device to recharge the battery using energy received by the energy-receiving device.
    Type: Application
    Filed: January 25, 2011
    Publication date: December 8, 2011
    Applicant: CYMBET CORPORATION
    Inventors: Harlan Theodore Jacobs, Mark Lynn Jenson, Jody Jon Klaassen, Jenn-Feng Yan
  • Patent number: 8044508
    Abstract: A combined battery and device apparatus and associated method. This apparatus includes a first conductive layer, a battery comprising a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, and an electrical circuit adjacent face-to-face to and electrically connected to the battery. Some embodiments further include a photovoltaic cell and/or thin-film capacitor. In some embodiments, the substrate includes a polymer having a melting point substantially below 700 degrees centigrade. In some embodiments, the substrate includes a glass. For example, some embodiments include a battery deposited directly on the back of a liquid-crystal display (LCD) device.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: October 25, 2011
    Assignee: Cymbet Corporation
    Inventors: Mark L. Jenson, Jody J. Klaassen
  • Patent number: 7939205
    Abstract: A method and apparatus for making thin-film batteries having composite multi-layered electrolytes with soft electrolyte between hard electrolyte covering the negative and/or positive electrode, and the resulting batteries. In some embodiments, foil-core cathode sheets each having a cathode material (e.g., LiCoO2) covered by a hard electrolyte on both sides, and foil-core anode sheets having an anode material (e.g., lithium metal) covered by a hard electrolyte on both sides, are laminated using a soft (e.g., polymer gel) electrolyte sandwiched between alternating cathode and anode sheets. A hard glass-like electrolyte layer obtains a smooth hard positive-electrode lithium-metal layer upon charging, but when very thin, have randomly spaced pinholes/defects. When the hard layers are formed on both the positive and negative electrodes, one electrode's dendrite-short-causing defects on are not aligned with the other electrode's defects.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 10, 2011
    Assignee: Cymbet Corporation
    Inventor: Jody J. Klaassen
  • Publication number: 20110097609
    Abstract: A combined battery and device apparatus and associated method. This apparatus includes a first conductive layer, a battery comprising a cathode layer; an anode layer, and an electrolyte layer located between and electrically isolating the anode layer from the cathode layer, wherein the anode or the cathode or both include an intercalation material, the battery disposed such that either the cathode layer or the anode layer is in electrical contact with the first conductive layer, and an electrical circuit adjacent face-to-face to and electrically connected to the battery. Some embodiments further include a photovoltaic cell and/or thin-film capacitor. In some embodiments, the substrate includes a polymer having a melting point substantially below 700 degrees centigrade. In some embodiments, the substrate includes a glass. For example, some embodiments include a battery deposited directly on the back of a liquid-crystal display (LCD) device.
    Type: Application
    Filed: December 27, 2010
    Publication date: April 28, 2011
    Applicant: CYMBET CORPORATION
    Inventors: Mark Lynn Jenson, Jody Jon Klaassen