Patents Assigned to DH Technologies Development Pte. Ltd.
  • Patent number: 11500352
    Abstract: A system and method is provided for monitoring a production process. In some aspects, the system may include an aseptic sampling device in fluidic connection with a process fluid, the aseptic sampling device operative to collect one or more samples from the process stream. A pretreatment device may be included to receive and pretreat the one or more samples. An analyzer is operative to analyze the pretreated samples and to produce one or more mass spectrometry (MS) spectra. A classifier receives and classifies the one or more MS spectra to provide a measure of product quality of the process fluid corresponding to the sampling location and time of sampling.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: November 15, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Stephen A. Tate
  • Patent number: 11476106
    Abstract: Methods and systems for delivering a liquid sample to an ion source for the generation of ions and subsequent analysis by mass spectrometry are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which the flow of desorption solvent within a sampling probe fluidly coupled to an ion source can be selectively controlled such that one or more analyte species can be desorbed from a sample substrate inserted within the sampling probe within a decreased volume of desorption solvent for subsequently delivery to the ion source. In various aspects, sensitivity can be increased due to higher desorption efficiency (e.g., due to increased desorption time) and/or decreased dilution of the desorbed analytes.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: October 18, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W. Arnold, Thomas R. Covey, Chang Liu
  • Patent number: 11474087
    Abstract: Systems and methods are disclosed for identifying actual XIC peaks of compounds of interest from samples so that more accurate expected retention times and more accurate expected retention time windows can be calculated. In one system, an actual XIC peak is identified using standard samples. The ratio of the quantity of the compound of interest in any two different samples is known, so this ratios is compared to the intensities of the XIC peak calculated in the two samples to identify an actual XIC peak. In another system, an actual XIC peak is identified using information about other compounds of interest in a plurality of samples. It is known that the XIC peaks of compounds of interest in the same samples have a similar distribution of retention times across those samples, so the distributions of retention times of XIC peaks are compared to identify actual XIC peaks.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: October 18, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Gordana Ivosev
  • Patent number: 11456164
    Abstract: Systems and methods are provided for identifying a precursor ion without using any a priori precursor ion information. In one method, a sample is analyzed using a tandem mass spectrometer, producing at least one measured product ion spectrum from a precursor mass-to-charge ratio range. The at least one measured product ion spectrum are received. A subset of measured product ions is selected from the at least one measured product ion spectrum. A list of candidate compounds is created by searching a dictionary of potential compounds that includes one or more predicted product ions for each of the potential compounds using the subset of measured product ions. A candidate compound on the list is selected as the identified compound. In another method, the measured product ions are assumed to correspond to shortened forms of the peptide and a protein database is searched for shortened forms of the peptide.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: September 27, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Stephen A. Tate, Ronald F. Bonner
  • Patent number: 11450519
    Abstract: Sampling probes and interfaces for mass spectrometry systems and methods are described to analyze a composition of a substance. The system includes a liquid reservoir containing solvent; a gas reservoir containing nebulizer gas; a conduit that is in fluid communication with the liquid reservoir, the conduit comprising a first and second portion and a junction portion, the first and second portion being joined at the junction portion, and defining an angle therebetween at the junction and the junction portion contains an aperture that is open to the atmosphere. A nebulizer conduit that is co-axial and partially surrounds the second portion and completely surrounds an end of the second portion can also be present, the nebulizer conduit being fluidly connected to the gas reservoir and that allows a gas to flow from the gas reservoir over an external surface of the second portion and the end of the second portion.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: September 20, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Thomas R Covey, Chang Liu
  • Patent number: 11430645
    Abstract: In one aspect, an electron-ion reaction module, e.g., an electron capture dissociation module, for use in a mass spectrometer is disclosed, which comprises a chamber, an electron source for generating electrons and introducing the electrons into the chamber, a gate electrode positioned relative to the electron source and the chamber, and a DC voltage source operatively coupled to the gate electrode for applying control voltages to the gate electrode. The electron-ion interaction module can further include a controller operably coupled to the DC voltage source and configured for adjusting the DC voltage applied to the gate electrode to adjust flow of electrons into the chamber.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: August 30, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Takashi Baba, Pavel Ryumin
  • Patent number: 11424114
    Abstract: A plurality of known compounds with known CCS values is analyzed using a DMS device. The DMS device determines how the intensities of their transmitted ions vary with different separation voltages (SVs) and compensation voltages (CVs). A machine learning algorithm builds a data model from the known m/z value, known CCS value, and measured pairs of CV and SV values that provide optimal transmission through the DMS device for each of the known compounds. An unknown compound with an unknown CCS value is then analyzed. The DMS device determines how the intensity of its ions varies with the same different SVs and CVs. Finally, the machine learning algorithm predicts the CCS value of the unknown compound from the data model, the known m/z of the unknown compound, and the measured pairs of CV and SV values that provide optimal transmission through the DMS device for the unknown compound.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: August 23, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: John Lawrence Campbell, Scott Hopkins
  • Patent number: 11408853
    Abstract: In DM-SWATH a plurality of CoVs and a precursor ion mass range are received. A processor performs an iterative series of steps for each CoV of the plurality of CoVs. For each CoV of the plurality of CoVs, the CoV is applied to the DMS device to select a group of precursor ions. A mass filter is instructed to select precursor ions of the group that are within the precursor ion mass range, producing a subgroup of precursor ions. A fragmentation device is instructed to fragment the subgroup of precursor ions, producing a group of product ions. A mass analyzer is instructed to measure the intensity and m/z of the group of product ions, producing a product ion spectrum for each CoV of the plurality of CoVs. DM-SWATH is further used to validate if a known compound is in a sample.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: August 9, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Yves Le Blanc, Brendon Seale
  • Patent number: 11378561
    Abstract: A plurality of measured product ion spectra is produced using a DIA tandem mass spectrometry method. One or more product ions are retrieved from a spectral library of known compounds or one or more theoretical product ions are calculated for the known compounds of a database. For each known or theoretical product ion, an XIC is calculated from the measured product ion spectra. Measured XIC peaks above a threshold intensity are grouped for the known compounds producing a subset of known compounds. Known or theoretical retention times are retrieved or calculated for the subset of known compounds. A regression function is calculated to correct the known or theoretical retention times using the known or theoretical retention times of the subset of known compounds as the independent variables and the measured retention times of the measured XIC peak groups of the subset of known compounds as the dependent variables.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: July 5, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Stephen A. Tate
  • Patent number: 11373735
    Abstract: A plurality of measured product ion spectra are produced using a DIA tandem mass spectrometry method. One or more product ions are retrieved from a spectral library of known compounds or one or more theoretical product ions are calculated for the known compounds of a database. The one or more product ions or one or more theoretical product ions for each known compound are compared to the measured product ion spectra to identify one or more known compounds in the sample. A database of related known compounds is searched using one or more known compounds, producing one or more matching related compounds and one or more product ions for each related compound. The one or more product ions for each related compound are compared to the measured product ion spectra to identify one or more related compounds in the sample.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 28, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Stephen A. Tate
  • Patent number: 11355334
    Abstract: Methods and systems are provided herein for selectively removing product ions resulting from an ECD dissociation event from the interaction region of an ECD reaction cell, while other precursor peptide ions continue to undergo ECD within the interaction region, thereby reducing or preventing the occurrence of multiple electron capture events by the product ions. In some aspects, the preferential extraction of product ions from the interaction region during the ECD reaction can occur without an auxiliary AC field being generated within the interaction region. Additionally, in some aspects, the methods and systems disclosed herein can subject the various product ions to a non-dissociative charge reduction via exposure to reagent ions of the opposite polarity so as to selectively concentrate product ions to a lower charge state.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: June 7, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Takashi Baba
  • Patent number: 11348777
    Abstract: In one aspect, a method of processing ions in a mass spectrometer is disclosed, which comprises trapping a plurality of ions having different mass-to-charge (m/z) ratios in a collision cell, releasing said ions from the collision cell in a descending order in m/z ratio, and receiving the ions in a mass analyzer having a plurality of rods to at least one of which an RF voltage is applied, where the RF voltage is varied from a first value to a lower second value as the released ions are received by the mass analyzer.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: May 31, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Mircea Guna
  • Patent number: 11348780
    Abstract: An ultrasonic transmitter (95) and detector (e.g., integrated as an ultrasound transducer) utilized in a feedback control system automatically monitors and/or detects surface profile (e.g., shape) of the liquid-air interface and adjusts the flow rate of sampling liquid to ensure that experimental conditions remain consistent at the time of sample introduction during serial samplings. The feedback control can provide for automated adjustment of the surface profile of the liquid-air interface in accordance with changes in desired set point according to an experimental workflow (e.g., automated adjustment between an interface corresponding to a vortex sampling set point and an overflow cleaning set point).
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 31, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W Arnold, Thomas R. Covey, Chang Liu
  • Patent number: 11342173
    Abstract: Apparatus, systems, and methods in accordance with various aspects of the applicant's teachings provide for improved interfaces for providing a sample flow from a sample conduit (e.g., an analytical conduit or capillary), including those used in sample separation techniques such as CE and HPLC, to an ESI source for ionization thereby.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: May 24, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Don W. Arnold
  • Patent number: 11335547
    Abstract: A separation device separates an unknown intact mAb or reduced mAb subunits of a known mAb class from a sample. An ion source device ionizes the mAb. A mass spectrometer fragments the ionized mAb using an ECD device and mass analyzes resulting product ions using a mass analyzer, producing one or more product ion spectra. Theoretical product ion peaks are calculated for one or more constant portions of the mAb class. The theoretical product ion peaks are removed from the one or more product ion spectra, producing one or more difference product ion spectra. De novo sequencing is applied to the one or more difference product ion spectra, producing one or more candidate sequences for one or more variable portions of the mAb. A genome database is searched for matches to the one or more candidate sequences, producing one or more matched sequences for the one or more variable portions.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: May 17, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Takashi Baba, Pavel Ryumin, William M. Loyd
  • Patent number: 11295833
    Abstract: A mass isolation device selects a precursor ion of a sample that has been digested using a protease. A first fragmentation device fragments the precursor ion using collision-induced dissociation (CID), and the resulting product ions are analyzed using a mass analyzer producing a CID spectrum. A list of theoretical candidate glycopeptide sequences is determined from CID spectrum. The mass isolation device again selects the precursor ion of the sample. A second fragmentation device fragments the precursor ion using electron-based dissociation (ExD), and the resulting product ions are analyzed using the mass analyzer producing a CID spectrum. For each sequence of the list, the sequence is computationally fragmented, producing theoretical fragments, mass-to-charge ratio (m/z) values are calculated for the theoretical fragments, and the sequence is scored using c and z fragment matching rules. The highest scoring sequence is identified as a peptide sequence of a glycopeptide of the sample.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: April 5, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Takashi Baba
  • Patent number: 11270877
    Abstract: Systems and methods described herein relate to a mass spectroscopy system having multipole ion guides that can receive ions from an ion source for transmission to downstream mass analyzers, while preventing unwanted ions from being transmitted into the high-vacuum chambers of mass spectrometer systems. At least one ion guide can have two or more auxiliary electrodes that extend along at least a portion of the ion guide. A power supply provides an RF voltage to the poles of the ion guide for radially confining the ions within the internal volume of the ion guide. The auxiliary electrodes are also provided with an auxiliary electrical signal that can selectively radially deflect from the internal volume at least a portion of low m/z ions so as to prevent transmission of undesired low m/z ions into the downstream mass analyzers.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 8, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventor: Mircea Guna
  • Patent number: 11251029
    Abstract: A dissociation device fragments a precursor ion, producing at least two different product ions with overlapping m/z values in the dissociation device. The dissociation device applies an AC voltage and a DC voltage creating a pseudopotential that traps ions below a threshold m/z including the at least two product ions. The dissociation device receives a charge reducing reagent that causes the trapped at least two product ions to be charge reduced until their m/z values increase above the threshold m/z set by the AC voltage. The increase in the m/z values of the at least two product ions decreases their overlap. The at least two product ions with increased m/z values are transmitted to another device for subsequent mass analysis by applying the DC voltage to the dissociation device relative to a DC voltage applied to the other device.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 15, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Takashi Baba, Pavel Ryumin, William M. Loyd
  • Patent number: 11232939
    Abstract: Mass spectrometer based analytical systems and methods in which a feedback control system can be utilized to control the flow of liquid within a sampling probe to adjust and/or maintain the surface profile (e.g., shape) of the liquid-air interface within an open sampling port of the sampling probe. The feedback control systems can automatically monitor and/or detect the surface profile of the liquid-air interface and adjust the flow rate of the sampling liquid to ensure that experimental conditions remain consistent at the time of sample introduction during serial samplings. These can provide stable and reproducible analyte flows of consistent dilution to the ion source, increasing reproducibility and/or accuracy of data generated by MS analysis. Can be used with a change in the desired set point according to the particular experimental workflow (e.g., automated adjustment between an interface corresponding to a sampling set point and a cleaning set point).
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 25, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W Arnold, Thomas R. Covey, Chang Liu, Bogdan Morosan
  • Patent number: 11232938
    Abstract: Methods and systems for delivering liquid sample to an ion source and subsequent analysis by mass spectrometry. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which desorption solvent is used in sampling interface to desorb analyte species from an SPME device that is coupled to an ion source to ionize analyte species desorbed into the desorption solvent for MS analysis (e.g., without a liquid chromatography (LC) column between the sampling interface and the ion source). In various aspects of the methods and systems described herein, configuring the sampling interface can be optimized so as to reduce the fluid volume dead space about the fluid inlet so as to concentrate the one or more analyte species desorbed at optimized conditions from the SPME substrate in a decreased volume of the desorption solvent when the SPME device is inserted into sampling interface.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: January 25, 2022
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Don W Arnold, Thomas R Covey, Chang Liu