Patents Assigned to Diacrin, Inc.
  • Publication number: 20090253201
    Abstract: An embryonic stem cell which may be induced to differentiate homogeneously into a desired primary cell line. The embryonic stem cell may be engineered with DNA, which encodes a protein or polypeptide which promotes differentiation of the stem cell into a specific cell line, such as, for example, a neuronal cell line, a muscle cell line, or a hematopoietic cell line. The DNA may encode a transcription factor found in the particular cell line. In another alternative, a desired cell line is produced from embryonic stem cells by culturing embryonic stem cells under conditions which provide for a three-dimensional network of embryonic stem cells, and then stimulating embryonic stem cells with an agent, such as retinoic acid, or dimethylsulfoxide, which promotes differentiation of the embryonic stem cells into the desired cell line, such as, for example, a neuronal cell line, or a muscle cell line.
    Type: Application
    Filed: June 11, 2009
    Publication date: October 8, 2009
    Applicant: Diacrin, Inc.
    Inventors: Jonathan H. Dinsmore, Judson Ratliff
  • Publication number: 20080206863
    Abstract: An embryonic stem cell which may be induced to differentiate homogeneously into a desired primary cell line. The embryonic stem cell may be engineered with DNA, which encodes a protein or polypeptide which promotes differentiation of the stem cell into a specific cell line, such as, for example, a neuronal cell line, a muscle cell line, or a hematopoietic cell line. The DNA may encode a transcription factor found in the particular cell line. In another alternative, a desired cell line is produced from embryonic stem cells by culturing embryonic stem cells under conditions which provide for a three-dimensional network of embryonic stem cells, and then stimulating embryonic stem cells with an agent, such as retinoic acid, or dimethylsulfoxide, which promotes differentiation of the embryonic stem cells into the desired cell line, such as, for example, a neuronal cell line, or a muscle cell line.
    Type: Application
    Filed: April 16, 2008
    Publication date: August 28, 2008
    Applicant: Diacrin, Inc.
    Inventors: Jonathan H. Dinsmore, Judson Ratliff
  • Publication number: 20060031944
    Abstract: An embryonic stem cell which may be induced to differentiate homogeneously into a desired primary cell line. The embryonic stem cell may be engineered with DNA, which encodes a protein or polypeptide which promotes differentiation of the stem cell into a specific cell line, such as, for example, a neuronal cell line, a muscle cell line, or a hematopoietic cell line. The DNA may encode a transcription factor found in the particular cell line. In another alternative, a desired cell line is produced from embryonic stem cells by culturing embryonic stem cells under conditions which provide for a three-dimensional network of embryonic stem cells, and then stimulating embryonic stem cells with an agent, such as retinoic acid, or dimethylsulfoxide, which promotes differentiation of the embryonic stem cells into the desired cell line, such as, for example, a neuronal cell line, or a muscle cell line.
    Type: Application
    Filed: October 13, 2005
    Publication date: February 9, 2006
    Applicant: Diacrin, Inc.
    Inventors: Jonathan Dinsmore, Judson Ratliff
  • Patent number: 6821779
    Abstract: The instant methods pertain to improved methods for storing neural cells, preferably dissociated neural cells, prior to their use in transplantation and to the cells obtained using such methods. One embodiment pertains to methods for storing the neural cells in medium lacking added buffer or added protein, other embodiments feature neural cells which are maintained at 4° C. prior to cryopreservation and have comparable viability and/or functionality to freshly harvest cells. In addition, methods for storing and/or transplantation of porcine neural cells are described.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: November 23, 2004
    Assignees: University Hospital Groningen, Inc., Diacrin, Inc.
    Inventors: Jan Koopmans, Douglas B. Jacoby, Jonathan Dinsmore
  • Patent number: 6713245
    Abstract: The instant methods pertain to an improved methods for storing neural cells, preferably dissociated neural cells, prior to their use in transplantation and to the cells obtained using such methods. One embodiment pertains to methods for storing the neural cells in medium lacking added buffer or added protein, other embodiments feature neural cells which are maintained at 4° C. prior to cryopreservation and have comparable viability and/or functionality to freshly harvested cells. In addition, methods for storing and/or transplantation of porcine neural cells are described.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: March 30, 2004
    Assignees: Diacrin, Inc., University Hospital Groningen
    Inventors: Jan Koopmans, Douglas B. Jacoby, Jonathan Dinsmore
  • Patent number: 6673604
    Abstract: Muscle cells and methods for using the muscle cells are provided. In one embodiment, the invention provides transplantable skeletal muscle cell compositions and their methods of use. In one embodiment, the muscle cells can be transplanted into patients having disorders characterized by insufficient cardiac function, e.g., congestive heart failure, in a subject by administering the skeletal myoblasts to the subject. The muscle cells can be autologous, allogeneic, or xenogeneic to the recipient.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: January 6, 2004
    Assignee: Diacrin, Inc.
    Inventor: Albert Edge
  • Patent number: 6610288
    Abstract: Isolated porcine hepatocytes, isolated populations of such hepatocytes and methods for using the hepatocytes to treat subjects with disorders characterized by insufficient liver function are described. The porcine hepatocytes can be either hepatocytes isolated from adult, immature, or embryonic swine. The porcine hepatocytes can be modified to be suitable for transplantation into a xenogeneic subject, for example, by altering an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in the subject (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof). The isolated porcine hepatocytes of the invention can be used to treat disorders characterized by insufficient liver function by administering the hepatocytes to a subject having such a disorder.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: August 26, 2003
    Assignees: Diacrin, Inc., Trustees of Boston University
    Inventors: Albert Edge, J. Ryan Gunsalus, Nezam H. Afdhal
  • Patent number: 6521448
    Abstract: The invention features porcine MHC class I genes and the use of the polypeptides they encode in induction of graft-specific immunological tolerance in recipients of porcine cell or organ transplant and the generation of certain useful antibodies.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: February 18, 2003
    Assignee: Diacrin, Inc.
    Inventors: Albert S. B. Edge, Henry F. Oettinger
  • Patent number: 6517833
    Abstract: Compositions comprising porcine retinal cells and methods for using the compositions to treat retinal disorders are described. The porcine retinal cells are preferably fetal neural retina cells or retinal pigment epithelial cells. The porcine retinal cells can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine retinal cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject. In one embodiment, the porcine retinal cells are obtained from a pig predetermined to be free from organisms which originate in pig and which are capable of transmitting infection or disease to the recipient subject.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: February 11, 2003
    Assignee: Diacrin, Inc.
    Inventor: Albert Edge
  • Publication number: 20020187550
    Abstract: An embryonic stem cell which may be induced to differentiate homogeneously into a desired primary cell line. The embryonic stem cell may be engineered with DNA, which encodes a protein or polypeptide which promotes differentiation of the stem cell into a specific cell line, such as, for example, a neuronal cell line, a muscle cell line, or a hematopoietic cell line. The DNA may encode a transcription factor found in the particular cell line. In another alternative, a desired cell line is produced from embryonic stem cells by culturing embryonic stem cells under conditions which provide for a three-dimensional network of embryonic stem cells, and then stimulating embryonic stem cells with an agent, such as retinoic acid, or dimethylsulfoxide, which promotes differentiation of the embryonic stem cells into the desired cell line, such as, for example, a neuronal cell line, or a muscle cell line.
    Type: Application
    Filed: August 8, 2002
    Publication date: December 12, 2002
    Applicant: Diacrin, Inc.
    Inventors: Jonathan H. Dinsmore, Judson Ratliff
  • Patent number: 6491912
    Abstract: Porcine cardiomyocytes and methods for using the cardiomyocytes to treat disorders characterized by insufficient cardiac function are described. The porcine cardiomyocytes are preferably embryonic porcine cardiomyocytes. The porcine cardiomyocytes can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine cardiomyocytes can be modified such that an antigen (e.g., an MHC class I antigen) on the cardiomyocyte surface which is capable of stimulating an immune response against the cardiomyocytes in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cardiomyocyte when introduced into the subject. In one embodiment, the porcine cardiomyocytes are obtained from a pig which is essentially free from organisms or substances which are capable of transmitting infection or disease to the recipient subject.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: December 10, 2002
    Assignee: Diacrin, Inc.
    Inventor: Jonathan Dinsmore
  • Patent number: 6444205
    Abstract: Methods for using neural cells to treat chronic pain and/or spasticity are described. The neural cells can be derived from any mammal, and are preferably human or porcine in origin. The neural cells preferably are serotonergic cells or are gamma-aminobutryic acid (GABA)—producing cells. Neural cells can be obtained from adult, juvenile, embryonic or fetal donors. Neural cells can be modified to be suitable for transplantation into a subject. For example, the neural cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject or can be genetically modified to produce a factor.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: September 3, 2002
    Assignee: Diacrin, Inc.
    Inventors: Jonathan Dinsmore, Julie Siegan
  • Patent number: 6432711
    Abstract: An embryonic stem cell which may be induced to differentiate homogeneously into a desired primary cell line. The embryonic stem cell may be engineered with DNA, which encodes a protein or polypeptide which promotes differentiation of the stem cell into a specific cell line, such as, for example, a neuronal cell line, a muscle cell line, or a hematopoietic cell line. The DNA may encode a transcription factor found in the particular cell line. In another alternative, a desired cell line is produced from embryonic stem cells by culturing embryonic stem cells under conditions which provide for a three-dimensional network of embryonic stem cells, and then stimulating embryonic stem cells with an agent, such as retinoic acid, or dimethylsulfoxide, which promotes differentiation of the embryonic stem cells into the desired cell line, such as, for example, a neuronal cell line, or a muscle cell line.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: August 13, 2002
    Assignee: Diacrin, Inc.
    Inventors: Jonathan H. Dinsmore, Judson Ratliff
  • Publication number: 20020031497
    Abstract: Porcine neural cells and methods for using the cells to treat neurological deficits due to neurodegeneration are described. The porcine neural cells are preferably embryonic mesencephalic, embryonic striatal cells, or embryonic cortical cells. The porcine neural cells can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine neural cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject. In one embodiment, the porcine neural cells are obtained from a pig which is essentially free from organisms or substances which are capable of transmitting infection or disease to the recipient subject.
    Type: Application
    Filed: April 26, 2001
    Publication date: March 14, 2002
    Applicant: Diacrin, Inc.
    Inventors: Thomas Fraser, Jonathan Dinsmore
  • Publication number: 20020009461
    Abstract: Porcine neural cells and methods for using the cells to treat neurological deficits due to neurodegeneration are described. The porcine neural cells are preferably embryonic mesencephalic, embryonic striatal cells, or embryonic cortical cells. The porcine neural cells can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine neural cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject. In one embodiment, the porcine neural cells are obtained from a pig which is essentially free from organisms or substances which are capable of transmitting infection or disease to the recipient subject.
    Type: Application
    Filed: May 2, 2001
    Publication date: January 24, 2002
    Applicant: Diacrin, Inc.
    Inventors: Ole Isacson, Jonathan Dinsmore
  • Publication number: 20010049827
    Abstract: Methods for providing a pathogen-free pig or pig fetus as a donor of tissue, cells and/or organs to a recipient human. Animals are free of zoonotic pathogens. When fetal tissues are used for transplantation, donor animals are free from zoonotic pathogens, pathogens able to cross the placental barrier, and tissue-specific pathogens, e.g., neurotropic pathogens. Tissues, cells and organs from pigs free of the above-listed pathogens are suitable for transplantation into humans, include fetal neuronal cells for treatment of Parkinson's disease and islet cells for treatment of islet insufficiency-related diseases.
    Type: Application
    Filed: August 4, 1997
    Publication date: December 6, 2001
    Applicant: DIACRIN, INC.
    Inventors: RICHARD HUNTER, E. MICHAEL EGAN
  • Publication number: 20010031256
    Abstract: Compositions comprising porcine retinal cells and methods for using the compositions to treat retinal disorders are described. The porcine retinal cells are preferably fetal neural retina cells or retinal pigment epithelial cells. The porcine retinal cells can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine retinal cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject. In one embodiment, the porcine retinal cells are obtained from a pig predetermined to be free from organisms which originate in pig and which are capable of transmitting infection or disease to the recipient subject.
    Type: Application
    Filed: June 12, 2001
    Publication date: October 18, 2001
    Applicant: Diacrin, Inc.
    Inventor: Albert Edge
  • Patent number: 6294383
    Abstract: Porcine neural cells and methods for using the cells to treat neurological deficits due to neurodegeneration are described. The porcine neural cells are preferably embryonic mesencephalic, embryonic striatal cells, or embryonic cortical cells. The porcine neural cells can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine neural cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject. In one embodiment, the porcine neural cells are obtained from a pig which is essentially free from organisms or substances which are capable of transmitting infection or disease to the recipient subject.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: September 25, 2001
    Assignees: The McLean Hospital Corporation, Diacrin, Inc.
    Inventors: Ole Isacson, Jonathan Dinsmore
  • Patent number: 6284245
    Abstract: Compositions comprising porcine retinal cells and methods for using the compositions to treat retinal disorders are described. The porcine retinal cells are preferably fetal neural retina cells or retinal pigment epithelial cells. The porcine retinal cells can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine retinal cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject. In one embodiment, the porcine retinal cells are obtained from a pig predetermined to be free from organisms which originate in pig and which are capable of transmitting infection or disease to the recipient subject.
    Type: Grant
    Filed: August 25, 1998
    Date of Patent: September 4, 2001
    Assignee: Diacrin, Inc.
    Inventor: Albert Edge
  • Patent number: 6277372
    Abstract: Porcine neural cells and methods for using the cells to treat neurological deficits due to neurodegeneration are described. The porcine neural cells are preferably embryonic mesencephalic, embryonic striatal cells, or embryonic cortical cells. The porcine neural cells can be modified to be suitable for transplantation into a xenogeneic subject, such as a human. For example, the porcine neural cells can be modified such that an antigen (e.g., an MHC class I antigen) on the cell surface which is capable of stimulating an immune response against the cell in a xenogeneic subject is altered (e.g., by contact with an anti-MHC class I antibody, or a fragment or derivative thereof) to inhibit rejection of the cell when introduced into the subject. In one embodiment, the porcine neural cells are obtained from a pig which is essentially free from organisms or substances which are capable of transmitting infection or disease to the recipient subject.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: August 21, 2001
    Assignee: Diacrin, Inc.
    Inventors: Thomas Fraser, Jonathan Dinsmore