Patents Assigned to Digi Sens AG
  • Patent number: 11262251
    Abstract: The invention relates to a load detection unit having a spring-elastic load carrier assembly for receiving the load (10) and a sensor (3) for the deformation of the load carrier assembly, which occurs under the load (10) that is to be detected, wherein a deformation transmission unit (6) is operatively arranged between the load carrier assembly and the sensor (3). A method, in which additionally a deformation transmission unit is used, is thus provided, which during operation picks up the deformation of the load carrier assembly and transmits it to the sensor as a changed force/path load.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: March 1, 2022
    Assignee: Digi Sens AG
    Inventor: Olivier Stuker
  • Publication number: 20200033202
    Abstract: The invention relates to a load detection unit having a spring-elastic load carrier assembly for receiving the load (10) and a sensor (3) for the deformation of the load carrier assembly, which occurs under the load (10) that is to be detected, wherein a deformation transmission unit (6) is operatively arranged between the load carrier assembly and the sensor (3). A method, in which additionally a deformation transmission unit is used, is thus provided, which during operation picks up the deformation of the load carrier assembly and transmits it to the sensor as a changed force/path load.
    Type: Application
    Filed: March 9, 2018
    Publication date: January 30, 2020
    Applicant: DIGI SENS AG
    Inventor: Olivier STUKER
  • Patent number: 10139264
    Abstract: An elastically deformable load bearing structure includes a measuring arrangement for measuring a magnitude of a load acting on the load bearing structure in a loadable section. A mechanical transmission element extends from the loadable section to a measuring section of the load bearing structure and cooperates operatively with a sensor. The sensor is arranged in the measurement section. The mechanical transmission element is constructed as a pivotable rocker supported by a rocker bearing positioned inside a length of the transmission element.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: November 27, 2018
    Assignee: DIGI SENS AG
    Inventor: Martin Lustenberger
  • Patent number: 9534948
    Abstract: The invention provides a method and a device for measuring the weight of a load, which is displaced with a load lifting device over the edge of a raised loading surface and thus pulled onto the same or pushed down from the same, wherein during this operating process, in a support of the load lifting device loaded by the load, the force currently acting due to the displacement of the load is measured during the passage through a predetermined weighing window and the weight of the load is determined mathematically from the course thereof. Preferably, the load sensor is constructed as a tube which is equipped with two deformation sensors equipped essentially at right angles to one another.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: January 3, 2017
    Assignee: DIGI SENS AG
    Inventor: Martin Lustenberger
  • Patent number: 9468999
    Abstract: The invention relates to a load measuring element for the braces of a machine in order to determine the force transmitted by the load measuring element, comprising a carrier element which can be exposed to the force by way of a force introduction element and in turn rests on a support. The force introduction element, the carrier element, and the support interact with each other during operation such that the carrier element flexibly deforms under the weight load, wherein a measurement element is provided for determining said flexible deformation, In this way, an associated height adjustment can be specifically activated in order to adjust the machine such that it can be set up without impermissible distortion of the frame.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: October 18, 2016
    Assignee: DIGI SENS AG
    Inventor: Martin Lustenberger
  • Publication number: 20160103011
    Abstract: The invention relates to an elastically deformable load bearing structure comprising a measuring assembly for gauging the size of a load (12) acting on the load bearing structure (1, 15, 40, 60) in a loadable section (3). The structure also comprises a mechanical transmission element embodied as a rod (8), extending from the loadable section (3) to a measuring section (5) of the load bearing structure (1, 15, 40, 60), and operationally interacting with a sensor (6) arranged on the measuring section (5).
    Type: Application
    Filed: May 5, 2014
    Publication date: April 14, 2016
    Applicant: DIGI SENS AG
    Inventor: Martin Lustenberger
  • Publication number: 20140069728
    Abstract: The invention provides a method and a device for measuring the weight of a load, which is displaced with a load lifting device over the edge of a raised loading surface and thus pulled onto the same or pushed down from the same, wherein during this operating process, in a support of the load lifting device loaded by the load, the force currently acting due to the displacement of the load is measured during the passage through a predetermined weighing window and the weight of the load is determined mathematically from the course thereof. Preferably, the load sensor is constructed as a tube which is equipped with two deformation sensors equipped essentially at right angles to one another.
    Type: Application
    Filed: February 6, 2012
    Publication date: March 13, 2014
    Applicant: DIGI SENS AG
    Inventor: Martin Lustenberger
  • Patent number: 8507810
    Abstract: The invention relates to a dynamic scale for bulk material, having two swivel arms (2) and two load-lifting arms (8) mounted to the free end of said swivel arms, with one hole (7) being located in each of the swivel arms (2) and positioned transversely to the extension of the swivel arm and also transversely to the neutral fiber brought about by the flexural load. A pipe (9) is fitted into the hole (7) and is welded thereto. The pipe (9) comprises two sensors (14, 15) transversely to the longitudinal axis thereof, said sensors being located at an angle of substantially 90° to each other and each being disposed at an angle of ±45° to the direction of the shear stress component ?xy. Under the influence of the shear stress, the cross section of the tube (9) is deformed into an ellipse that is inclined at about 45°, the shorter and longer axis (11, 13) thereof being measured using the sensors (14, 15).
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: August 13, 2013
    Assignee: Digi Sens AG
    Inventor: Martin Lustenberger
  • Patent number: 6327913
    Abstract: The inventive force measuring cell consists of a plate (2) which is provided with a circular hole (2), the axis of which is perpendicular to the surface of said plate (2) and to the direction of the force that is to be measured. Said axis also lies within the neutral surface of the plate (2). The plate (2) can also be the web of a carrier. A measuring transducer (12) is inserted into the hole (3) in order to measure any modification of the size of the diameter of said hole (3) on a plane that is inclined at an angle of 45° counter to the direction of the force (F) to be measured. A lateral force is created in the direction of y in addition to a transverse stress &tgr; with a component &tgr;xy by applying force in the direction of y when at least one side of the plate (2) is clamped in the base. The originally circular hole (3) is deformed into an ellipse. The measuring transducer (12) consists of a measuring transformer with an oscillating string.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: December 11, 2001
    Assignee: Digi Sens AG
    Inventors: Martin Lustenberger, Johannes Wirth
  • Patent number: 5601346
    Abstract: The present invention relates to a process and a device for the prevention of skidding in vehicles with at least two wheels (1-4) of which at least one (1, 4) is steerable, wherein the actual rotary acceleration of the vehicle along its vertical axis is measured by a rotary accelerometer (8) and compared with the nominal rotary acceleration which is determined by a computer (9) from the turn angle of the steerable wheels (1, 4) and the vehicle speed. The turn angle is measured by an angle measuring device (6), for example, at a steering wheel (5). The speed is measured with a speed pick-up (7) on at least one of the wheels (1-4) of the vehicle. The calculated difference between nominal and actual rotary acceleration is reduced to zero by the real-time generation of a compensation-torque in a device (10). This device (10) might consist of an electric motor (11) driving two contra-rotating flywheels (12) that are selectively decelerated and will stop the skidding process.
    Type: Grant
    Filed: March 25, 1996
    Date of Patent: February 11, 1997
    Assignee: Digi Sens AG Digitale Messtechnik
    Inventors: Martin P. Lustenberger, Heinrich K. Feichtinger