Patents Assigned to EM Microelectronic-Marin SA
  • Patent number: 11134382
    Abstract: A method of authenticating a transponder in communication with a server. The method includes the steps of defining a word in the transponder with a previous state of a counter of the transponder, incremented by a random number generated in the transponder, calculating a one-time password in the transponder with the aid of an HOTP algorithm and of a secret key on the basis of the word, transmitting the word and the one-time password to the server, calculating another one-time password in the server with the word received from the transponder by the HOTP algorithm and with one and the same secret key, and checking whether the passwords are identical so as to authenticate the transponder and authorize access to a site determined by the server.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: September 28, 2021
    Assignee: EM Microelectronic-Marin SA
    Inventors: Tomas Novak, Julian Guilloux, Stephanie Salgado
  • Patent number: 11012271
    Abstract: An RFID circuit and to a demodulator for an RFID circuit, the demodulator including an input and at least one output, a clock extractor connected to the input, a comparator connected to at least one output, a finite impulse response FIR filter arrangement connected to the input and connected to the comparator.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 18, 2021
    Assignee: EM Microelectronic-Marin SA
    Inventors: Alessandro Venca, Michel Moser
  • Patent number: 11003232
    Abstract: A power management integrated circuit including a reference signal generator, a start-up unit and a supervisory circuit. The supervisory circuit includes an electrical resistance circuit connected between a first end node and a second end node; a power supply input for receiving a supply voltage, this power supply input being connected to the first end node; a low reference potential node; a comparator for comparing a reference voltage value at a first input and a divided voltage value at a second input connected to an internal electrical node of the electrical resistance circuit, the comparator can output a monitoring signal. The supervisory circuit includes a switch controlled by the start-up unit so that the switch is selectively closed and opened based on a detected operational state of the reference signal generator indicating a normal functioning phase of the power management circuit.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: May 11, 2021
    Assignee: EM Microelectronic-Marin SA
    Inventors: Jerome Saby, Matteo Contaldo, Yves Theoduloz
  • Patent number: 10976340
    Abstract: An electronic measuring device for measuring a physical parameter includes a differential analogue sensor formed from two capacitances—an excitation circuit of the differential analogue sensor providing to the sensor two electrical excitation signals which are inverted—a measuring circuit which generates an analogue electrical voltage which is a function determined from the value of the sensor, and a circuit for compensating for a possible offset of the sensor, which is formed from a compensation capacitance, which is excited by its own electrical excitation signal. The excitation circuit is arranged in order to be able to provide to an additional capacitance of the compensation circuit its own electrical excitation signal having a linear dependence on the absolute temperature with a determined proportionality factor in order to compensate for a drift in temperature of an electrical assembly of the measuring device comprising at least the compensation capacitance.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: April 13, 2021
    Assignee: EM Microelectronic-Marin SA
    Inventors: Sylvain Grosjean, Yonghong Tao, Alexandre Deschildre, Hugues Blangy
  • Patent number: 10964184
    Abstract: An integrated circuit chip (2), an antenna (3) and a tamper loop (4), and in addition to this, a light emitting diode (LED) (20), configured to be activated, i.e. supplied with current, upon a signal received by the antenna (3). The LED (20) is integrated in the device in such a way that when the LED is activated in the above-described way, the LED lights up so as to become visible by the naked eye, on the condition that the tamper loop (4) is in a predefined state, either open or closed. The LED (20) is coupled between the same terminals (8,9) of the integrated circuit chip (2) as the tamper loop (4).
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: March 30, 2021
    Assignee: EM MICROELECTRONIC-MARIN SA
    Inventors: Christophe Entringer, Thomas Coulot, Fritz Mbumb-Kumb, Matteo Contaldo
  • Patent number: 10910945
    Abstract: The elementary pumping cell comprises an input (E) receiving an input voltage (Vin), a clock terminal (H) receiving a first clock signal (CK1) and an output (S), a first capacitor (C1) having a first terminal connected to the clock terminal and a second terminal, a first transistor (A1) having a first source/drain terminal coupled to the input, a second source/drain terminal and a gate terminal, a second transistor (A2) having a first source/drain terminal, a second source/drain terminal coupled to the input and a gate terminal coupled to the second terminal of the first capacitor, a third transistor (A3) having a first source/drain terminal coupled to the first source/drain terminal of the second transistor, a second source/drain terminal coupled to the gate terminal of the second transistor and a gate terminal coupled to the input, and a fourth transistor (A4) having a first source/drain terminal coupled to the second source/drain terminal of the first transistor, a second source/drain terminal coupled to t
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 2, 2021
    Assignee: EM Microelectronic-Marin SA
    Inventors: Mathieu Coustans, Lubomir Plavec, Mario Dellea
  • Publication number: 20200363368
    Abstract: A sensor interface circuit (5) for an amperometric electrochemical sensor (3). The circuit includes: a current-to-voltage converter (9, Rf) connected to a first terminal (WRK) of the sensor (3) for converting an electric current through the sensor (3) to a voltage at an output terminal (10) of the current-to-voltage converter (9, Rf); a first amplifier (7) connected between a second terminal (REF) and a third terminal (CNTR) of the sensor (3) for maintaining a substantially fixed voltage difference between the first and second terminals (WRK, REF) of the sensor (3); a power supply (11) for powering the voltage converter (9, Rf) and for powering a first portion (31) of the first amplifier (7); and a negative voltage converter (17) configured to power a second portion of the first amplifier (7) through its low-side supply terminal (41), while a high-side supply terminal (39) of the second portion of the first amplifier (7) is configured to be connected to the power supply (11).
    Type: Application
    Filed: April 27, 2020
    Publication date: November 19, 2020
    Applicant: EM MICROELECTRONIC-MARIN SA
    Inventor: Yonghong TAO
  • Publication number: 20200349407
    Abstract: A dual frequency HF-UHF RFID integrated circuit including a power supply. The power supply includes: an HF branch including an HF rectifier and a linear voltage regulator, wherein the HF rectifier is configured to be connected to a resonance circuit formed by a HF antenna-coil and a resonance capacitor and wherein the HF rectifier is connected to the linear voltage regulator; a UHF branch including a UHF rectifier and a shunt voltage regulator, wherein the UHF rectifier has a charge pump and is configured to be connected to a UHF antenna and wherein the UHF rectifier is connected to the shunt voltage regulator; and a supply line, wherein the linear voltage regulator and the shunt voltage regulator are both connected to the supply line of the power supply.
    Type: Application
    Filed: March 30, 2020
    Publication date: November 5, 2020
    Applicant: EM MICROELECTRONIC-MARIN SA
    Inventor: Thomas COULOT
  • Publication number: 20200349821
    Abstract: An integrated circuit chip (2), an antenna (3) and a tamper loop (4), and in addition to this, a light emitting diode (LED) (20), configured to be activated, i.e. supplied with current, upon a signal received by the antenna (3). The LED (20) is integrated in the device in such a way that when the LED is activated in the above-described way, the LED lights up so as to become visible by the naked eye, on the condition that the tamper loop (4) is in a predefined state, either open or closed. The LED (20) is coupled between the same terminals (8,9) of the integrated circuit chip (2) as the tamper loop (4).
    Type: Application
    Filed: April 2, 2020
    Publication date: November 5, 2020
    Applicant: EM Microelectronic-Marin SA
    Inventors: Christophe Entringer, Thomas Coulot, Fritz Mbumb-Kumb, Matteo Contaldo
  • Publication number: 20200284854
    Abstract: A method of determining an absolute angle of a magnetic field includes receiving a first digital measurement value Bx of a first magnetic field component indicating intensity of the magnetic field along a first axis; receiving a second digital measurement value Bz of a second magnetic field component indicating the intensity of the magnetic field along a second axis, orthogonal to the first axis; determining absolute values for the first and second magnetic field components; and determining the angle of the magnetic field with respect to the first or second axis. The angle is determined so that the angle is derivable from the value of arcsin of Bz or of its approximation, when the absolute value of Bz? the absolute value of Bx, and derivable from the value of arccos of Bx or of its approximation, when the absolute value of Bz> the absolute value of Bx.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 10, 2020
    Applicant: EM Microelectronic-Marin SA
    Inventors: Lorenzo PIEROBON, Alexandre DESCHILDRE, Evan LOJEWSKI, Jeremy SCHLACHTER
  • Publication number: 20200204997
    Abstract: A method of authenticating a transponder communicating with a server, including: calculating a one-time password in the transponder with a dedicated algorithm, on the basis of the state of a counter and a physical quantity, such as a transmission delay determined in the transponder during reading by a reading device; transmitting the password to the server by the reading device, which determines a transmission delay of the transponder, and transmitting to the server, in addition to the password, the information about the transmission delay determined in the reading device; decrypting by the dedicated algorithm the password, and checking if the decrypted transmission delay of the received password corresponds to the transmission delay determined by the reading device within a determined temporal margin, and if the state of the counter is different from a received previous state of the counter so as to authenticate the transponder.
    Type: Application
    Filed: November 19, 2019
    Publication date: June 25, 2020
    Applicant: EM Microelectronic-Marin SA
    Inventors: Stéphanie SALGADO, Julian GUILLOUX
  • Publication number: 20200099107
    Abstract: The system (4) is provided for managing at least one sub-assembly (2) of an electric battery. Each sub-assembly comprises a plurality of power storage cells (12). The system includes, for each power storage cell, a circuit (14) for managing the state of the cell and a communication circuit (16), which is configured such that it receives and transmits data relative to the cell. The communication circuit is configured such that it transposes, over a carrier frequency, the data to be received and transmitted, the value of said carrier frequency being greater than or equal to 1 GHz. The management system further includes, for each sub-assembly, a loss cable (18) connecting the power storage cells of said sub-assembly. The loss cable acts as a waveguide and is coupled by capacitive coupling to the communication circuit of each power storage cell.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Applicant: EM Microelectronic-Marin SA
    Inventors: Thierry SCORDILIS, Jerome SABY, Arnaud CASAGRANDE, Luca DE ROSA
  • Patent number: 10564176
    Abstract: A capacitive accelerometer for measuring an acceleration value is provided, including a first and a second electrode; a third mobile electrode arranged therebetween, and forming with the first electrode a first capacitor, and with the second electrode a second capacitor, the third electrode being displaced when the accelerometer is subject to acceleration and generates a capacitance difference value transformable to electrical charges; a first and a second voltage source configured to selectively apply first and second voltages to the first and the second electrodes, respectively, and a third voltage to the third electrode, and to generate electrostatic forces acting on the third electrode, the first, second and/or third voltages applied during electrical charge transfers for collecting the electrical charges to measure the acceleration; and an electrostatic force compensator to compensate for missing electrostatic forces due to a modified charge transfer rate, a compensation amount dependent on the modified
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: February 18, 2020
    Assignee: EM Microelectronic-Marin SA
    Inventors: Sylvain Grosjean, Yonghong Tao, Jean-Michel Daga
  • Patent number: 10523157
    Abstract: A method for improving threshold accuracy in an RFID-device through offset cancellation, and including the steps of providing a comparator including a first and a second amplifiers, providing a current output digital-to-analogue converter, AC-coupling in an RF-signal into the detector circuit, during a first phase, applying a signal based on the RF-signal into the first amplifier while a current of the DAC is set to zero, and applying a current of the DAC into the second amplifier while a signal based on the RF-signal is set to zero, during a second phase, applying the current of the DAC into the first amplifier while the signal based on the RF-signal is set to zero, and applying the signal based on the RF-signal into the second amplifier while the current of the DAC is set to zero.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: December 31, 2019
    Assignee: EM Microelectronic-Marin SA
    Inventors: Robert R. Rotzoll, Kevin Scott Buescher
  • Patent number: 10509993
    Abstract: A method for providing identification and access with respect to a passive radio-frequency tag in a tag population, the passive tag being configured for receiving ACK commands including an identification parameter, the method including receiving an initiating command for identifying and accessing a tag, the initiating command including a slot number having a first value if a value in a slot counter of the tag is equal to the first value, then transitioning to an Open or a Secured state, otherwise transitioning to an Arbitrate state in a case where the tag has transitioned to the Arbitrate state, receiving a command for repeating a tag access request, referred to as repetition command, the command including a slot number having a second value, different from the first value, the second value being equal to the value in the slot counter of the tag, transitioning to the Open or Secured state, receiving an ACK command, ignoring the ACK command.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 17, 2019
    Assignee: EM Microelectronic-Marin SA
    Inventors: James J Springer, Tomas Hrdy, Martin Jager
  • Publication number: 20190372808
    Abstract: An RFID circuit and to a demodulator for an RFID circuit, the demodulator including an input and at least one output, a clock extractor connected to the input, a comparator connected to at least one output, a finite impulse response FIR filter arrangement connected to the input and connected to the comparator.
    Type: Application
    Filed: May 13, 2019
    Publication date: December 5, 2019
    Applicant: EM Microelectronic-Marin SA
    Inventors: Alessandro VENCA, Michel MOSER
  • Publication number: 20190372458
    Abstract: The elementary pumping cell comprises an input (E) receiving an input voltage (Vin), a clock terminal (H) receiving a first clock signal (CK1) and an output (S), a first capacitor (C1) having a first terminal connected to the clock terminal and a second terminal, a first transistor (A1) having a first source/drain terminal coupled to the input, a second source/drain terminal and a gate terminal, a second transistor (A2) having a first source/drain terminal, a second source/drain terminal coupled to the input and a gate terminal coupled to the second terminal of the first capacitor, a third transistor (A3) having a first source/drain terminal coupled to the first source/drain terminal of the second transistor, a second source/drain terminal coupled to the gate terminal of the second transistor and a gate terminal coupled to the input, and a fourth transistor (A4) having a first source/drain terminal coupled to the second source/drain terminal of the first transistor, a second source/drain terminal coupled to t
    Type: Application
    Filed: May 3, 2019
    Publication date: December 5, 2019
    Applicant: EM Microelectronic-Marin SA
    Inventors: Mathieu COUSTANS, Lubomir PLAVEC, Mario DELLEA
  • Publication number: 20190310699
    Abstract: A power management integrated circuit including a reference signal generator, a start-up unit and a supervisory circuit. The supervisory circuit includes an electrical resistance circuit connected between a first end node and a second end node; a power supply input for receiving a supply voltage, this power supply input being connected to the first end node; a low reference potential node; a comparator for comparing a reference voltage value at a first input and a divided voltage value at a second input connected to an internal electrical node of the electrical resistance circuit, the comparator can output a monitoring signal. The supervisory circuit includes a switch controlled by the start-up unit so that the switch is selectively closed and opened based on a detected operational state of the reference signal generator indicating a normal functioning phase of the power management circuit.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 10, 2019
    Applicant: EM Microelectronic-Marin SA
    Inventors: Jerome SABY, Matteo Contaldo, Yves Theoduloz
  • Patent number: 10429334
    Abstract: A humidity sensor is provided, including a silicon base plate on which several intermetallic dielectric layers, each of which is provided with a metallic zone, and a metal layer are disposed, wherein the metal layer is etched to form two electrodes, each including an armature provided with a plurality of arms, wherein each armature is mounted so that the arms are interlaced to have arms positioned to face one another. The sensor also includes a temperature module or a heating module.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: October 1, 2019
    Assignee: EM Microelectronic-Marin SA
    Inventor: Pinchas Novac
  • Patent number: 10411648
    Abstract: The present invention concerns an electronic oscillator comprising: an LC resonant circuit comprising an inductive component and a capacitive component, the LC resonant circuit being connected to a first reference voltage node and to an oscillator output node; a first transistor connected to the oscillator output node and arranged to periodically operate in a conducting state and a non-conducting state; and a phase shift circuit. A phase shift circuit output is connected to the first transistor, while a phase shift circuit input is connected by a first feedback circuit to the oscillator output node. The phase shift circuit comprises a signal phase shifter for shifting the phase of a first feedback signal from the first feedback circuit by substantially 180 degrees.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: September 10, 2019
    Assignee: EM Microelectronic-Marin SA
    Inventors: Tu Cao-Thong, Mario Dellea