Patents Assigned to Eneco, Inc.
  • Publication number: 20070024154
    Abstract: A solid-state energy converter with a semiconductor or semiconductor-metal implementation is provided for conversion of thermal energy to electric energy, or electric energy to refrigeration. In n-type heat-to-electricity embodiments, a highly doped n* emitter region made of a metal or semiconductor injects carriers into an n-type gap region. A p-type layer is positioned between the emitter region and gap region, allowing for discontinuity of corresponding Fermi-levels and forming a potential barrier to sort electrons by energy. Additional p-type layers can optionally be formed on the collector side of the converter. One type of these layers with higher carrier concentration (p*) serves as a blocking layer at the cold side of the converter, and another layer (p**) with carrier concentration close to the gap reduces a thermoelectric back flow component. Ohmic contacts on both sides of the device close the electrical circuit through an external load to convert heat to electricity.
    Type: Application
    Filed: September 13, 2006
    Publication date: February 1, 2007
    Applicant: Eneco, Inc.
    Inventors: Yan Kucherov, Peter Hagelstein
  • Patent number: 7109408
    Abstract: A solid-state energy converter with a semiconductor or semiconductor-metal implementation is provided for conversion of thermal energy to electric energy, or electric energy to refrigeration. In n-type heat-to-electricity embodiments, a highly doped n* emitter region made of a metal or semiconductor injects carriers into an n-type gap region. A p-type layer is positioned between the emitter region and gap region, allowing for discontinuity of corresponding Fermi-levels and forming a potential barrier to sort electrons by energy. Additional p-type layers can optionally be formed on the collector side of the converter. One type of these layers with higher carrier concentration (p*) serves as a blocking layer at the cold side of the converter, and another layer (p**) with carrier concentration close to the gap reduces a thermoelectric back flow component. Ohmic contacts on both sides of the device close the electrical circuit through an external load to convert heat to electricity.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: September 19, 2006
    Assignee: Eneco, Inc.
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Publication number: 20040207037
    Abstract: A solid-state energy converter with a semiconductor or semiconductor-metal implementation is provided for conversion of thermal energy to electric energy, or electric energy to refrigeration. In n-type heat-to-electricity embodiments, a highly doped n* emitter region made of a metal or semiconductor injects carriers into an n-type gap region. A p-type layer is positioned between the emitter region and gap region, allowing for discontinuity of corresponding Fermi-levels and forming a potential barrier to sort electrons by energy. Additional p-type layers can optionally be formed on the collector side of the converter. One type of these layers with higher carrier concentration (p*) serves as a blocking layer at the cold side of the converter, and another layer (p**) with carrier concentration close to the gap reduces a thermoelectric back flow component. Ohmic contacts on both sides of the device close the electrical circuit through an external load to convert heat to electricity.
    Type: Application
    Filed: March 15, 2004
    Publication date: October 21, 2004
    Applicant: Eneco, Inc.
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Publication number: 20040050415
    Abstract: Tunneling-effect converters of thermal energy to electricity with an emitter and a collector separated from each other by a distance that is comparable to atomic dimensions and where tunneling effect plays an important role in the charge movement from the emitter to the collector across the gap separating such emitter and collector. At least one of the emitter and collector structures includes a flexible structure. Tunneling-effect converters include devices that convert thermal energy to electrical energy and devices that provide refrigeration when electric power is supplied to such devices.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 18, 2004
    Applicant: Eneco Inc.
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Publication number: 20030184188
    Abstract: The present invention embodies a solid state thermionic energy converter and is directed to a method and apparatus for conversion of thermal energy to electrical energy, and electrical energy to refrigeration. The present invention maintains a thermal separation between an emitter and a collector through a fractional surface contact of decreasing cross-sectional area towards the point of contact. The fractional surface contacts may be associated with the emitter, a barrier, or the collector. Maintaining a thermal separation between the emitter and the collector provides for ballistic electron transport through the barrier and reduces the transport of electrons through thermal conductivity. Hence, the efficiency is increased through the collection of ballistic electrons and the reduction of thermal conductivity electrons which cannot be collected. The inventive principle works for hole conductivity, as well as for electrons.
    Type: Application
    Filed: November 27, 2002
    Publication date: October 2, 2003
    Applicant: Eneco, Inc.
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Patent number: 6489704
    Abstract: The present invention embodies a solid state thermionic energy converter and is directed to a method and apparatus for conversion of thermal energy to electrical energy, and electrical energy to refrigeration. The present invention maintains a thermal separation between an emitter and a collector through a fractional surface contact of decreasing cross-sectional area towards the point of contact. The fractional surface contacts may be associated with the emitter, a barrier, or the collector. Maintaining a thermal separation between the emitter and the collector provides for ballistic electron transport through the barrier and reduces the transport of electrons through thermal conductivity. Hence, the efficiency is increased through the collection of ballistic electrons and the reduction of thermal conductivity electrons which cannot be collected. The inventive principle works for hole conductivity, as well as for electrons.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: December 3, 2002
    Assignee: Eneco, Inc.
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Patent number: 6396191
    Abstract: Solid state thermionic energy converter semiconductor diode implementation and method for conversion of thermal energy to electric energy, and electric energy to refrigeration. In embodiments of this invention a highly doped n* region can serve as an emitter region, from which carriers can be injected into a gap region. The gap region can be p-type, intrinsic, or moderately doped n-type. A hot ohmic contact is connected to the n*-type region. A cold ohmic contact serves as a collector and is connected to the other side of the gap region. The cold ohmic contact has a recombination region formed between the cold ohmic contact and the gap region and a blocking compensation layer that reduces the thermoelectric back flow component. The heated emitter relative to the collector generates an EMF which drives current through a series load. The inventive principle works for hole conductivity, as well as for electrons.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: May 28, 2002
    Assignee: Eneco, Inc.
    Inventors: Peter L. Hagelstein, Yan R. Kucherov
  • Patent number: 5792256
    Abstract: A method of making n-type semiconducting diamond is disclosed, which is doped with boron-10 at the time of diamond formation and bombarded with neutrons for in-situ conversion of boron-10 to lithium-7, while filtering the neutrons from high energy components during irradiation.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: August 11, 1998
    Assignee: ENECO, Inc.
    Inventors: Yan R. Kucherov, G. S. Karumidze, Shota Shalvovich Shavelashvili, R. Ya Kucherov
  • Patent number: 5653800
    Abstract: A method of making n-type semiconducting diamond is disclosed, which is doped with boron-10 at the time of diamond formation and bombarded with neutrons for in-situ conversion of boron-10 to lithium-7, while filtering the neutrons from high energy components during irradiation.
    Type: Grant
    Filed: August 3, 1995
    Date of Patent: August 5, 1997
    Assignee: Eneco, Inc.
    Inventors: Yan R. Kucherov, R. Ya. Kucherov, G. S. Karumidze, Shota Shalvovich Shavelashvili, Paul S. Evans