Patents Assigned to Epigenomics AG
  • Patent number: 11345966
    Abstract: The present invention relates to the field of pharmacogenomics and in particular to detecting the presence or absence of hypermethylated DNA. The detection of CpG methylation in marker DNA is useful for the diagnosis of cancers and the invention provides improved methods for this purpose. These improved methods allow in particular for a more sensitive detection of methylated marker DNA with high backgrounds of unmethylated marker DNA.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 31, 2022
    Assignee: EPIGENOMICS AG
    Inventors: Denise Kottwitz, Jörn Lewin, Anne Schlegel, Reimo Tetzner
  • Patent number: 11261499
    Abstract: The invention provides methods, nucleic acids and kits for determining the prognosis of a subject having cancer. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of said disorder, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: March 1, 2022
    Assignee: EPIGENOMICS AG
    Inventors: Jörn Lewin, Manuel Krispin
  • Patent number: 11186879
    Abstract: The invention provides methods, nucleic acids and kits for detecting, or for detecting and distinguishing between or among liver cell proliferative disorders or for detecting, or for detecting and distinguishing between or among colorectal cell proliferative disorders. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of and differentiation between said class of disorders, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: November 30, 2021
    Assignee: EPIGENOMICS AG
    Inventors: Catherine E. Lofton-Day, Andrew Z. Sledziewski, Ralf Lesche, Matthias Schuster, Juergen Distler, Reimo Tetzner, Thomas Hildmann, Fabian Model, Xiaoling Song
  • Patent number: 10731215
    Abstract: Aspects of the present invention relate to compositions and methods for providing DNA fragments from a remote sample. In particular aspects a remote sample comprising DNA is provided, DNA is isolated from the remote sample, and the isolated DNA is treated in a way which allows differentiation of methylated and unmethylated cytosine. Additional, particular embodiments provide compositions and methods for methylation analysis of DNA derived from a remote sample. Other aspects provide for compositions and methods of whole genome amplification of bisulfite treated DNA. Other aspects provide methods for determining the presence or absence of methylation of at least one cytosine, or a series of cytosines in cis, in human DNA of a blood sample, a plasma sample, a serum sample or a urine sample from a human individual.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: August 4, 2020
    Assignee: EPIGENOMICS AG
    Inventors: Matthias Ballhause, Kurt Berlin, Theo De Vos, Dimo Dietrich, Volker Liebenberg, Catherine Lofton-Day, Joe Lograsso, Jennifer Maas, Fabian Model, Matthias Schuster, Andrew Z. Sledziewski, Reimo Tetzner
  • Patent number: 10626462
    Abstract: The invention provides methods, nucleic acids and kits for determining the prognosis of a subject having cancer. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of said disorder, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: April 21, 2020
    Assignee: EPIGENOMICS AG
    Inventors: Joern Lewin, Manuel Krispin
  • Patent number: 10385402
    Abstract: The invention provides methods, nucleic acids and kits for detecting, or for detecting and distinguishing between or among liver cell proliferative disorders or for detecting, or for detecting and distinguishing between or among colorectal cell proliferative disorders. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of and differentiation between said class of disorders, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: August 20, 2019
    Assignee: EPIGENOMICS AG
    Inventors: Catherine E. Lofton-Day, Andrew Z. Sledziewski, Ralf Lesche, Matthias Schuster, Juergen Distler, Reimo Tetzner, Thomas Hildmann, Fabian Model, Xiaoling Song
  • Publication number: 20190032148
    Abstract: The present invention relates to the field of pharmacogenomics and in particular to detecting the presence or absence of methylated ANKRD13B and/or FOXF2 DNA derived from a tumor in blood or blood-derived samples or in other body fluids that contain DNA released from a tumor. This detection is useful for a minimally invasive diagnosis of cancers and the invention provides methods and oligonucleotides suitable for this purpose.
    Type: Application
    Filed: January 27, 2017
    Publication date: January 31, 2019
    Applicant: EPIGENOMICS AG
    Inventors: Jörn LEWIN, Denise KOTTWITZ, Selina ESCHE
  • Patent number: 9988683
    Abstract: Provided are methods and nucleic acids for detecting, differentiating or distinguishing between colon cell proliferative disorders by analysis of one or more of the genes Versican, TPEF, H-Cadherin, Calcitonin, and EYA4. Further provided are novel nucleic acid sequences useful for the cell proliferative disorder specific analysis of said genes as well as methods, assays and kits thereof.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: June 5, 2018
    Assignee: EPIGENOMICS AG
    Inventors: Peter Adorjan, Matthias Burger, Sabine Maier, Ralf Lesche, Susan Cottrell, Suzanne Mooney
  • Patent number: 9957575
    Abstract: The present invention relates to the field of pharmacogenomics and in particular to detecting the presence or absence of hypermethylated DNA. The detection of CpG methylation in marker DNA is useful for the diagnosis of cancers and the invention provides improved methods for this purpose. These improved methods allow in particular for a more sensitive detection of methylated marker DNA with high backgrounds of unmethylated marker DNA.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: May 1, 2018
    Assignee: EPIGENOMICS AG
    Inventors: Denise Kottwitz, Jörn Lewin, Anne Schlegel, Reimo Tetzner
  • Patent number: 9939441
    Abstract: Provided herein are methods, nucleic acids and kits for detecting a cell proliferative disorder. Also provided herein are genomic sequences of RASSF?-2, the methylation patterns of which have utility for the improved detection of cell proliferative disorders, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: April 10, 2018
    Assignee: EPIGENOMICS AG
    Inventors: Dimo Dietrich, Catherine E. Lofton-Day, Shannon Payne
  • Patent number: 9868756
    Abstract: The present application is directed to a method for performing a bisulfite reaction to determine methylation positions in a nucleic acid, i.e. methylated and non-methylated cytosines, whereby the nucleic acid is bound to a solid phase during the deamination and/or desulfonation step of the bisulfite reaction. The solid phase is preferably a material comprising glass or silica, more preferably a glass fleece, glass membrane or a magnetic glass particle. Further, the use of a solid phase for binding a nucleic acid during the deamination and/or desulfonation step of the bisulfite reaction is disclosed and a kit containing a bisulfite reagent and a solid phase.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: January 16, 2018
    Assignee: EPIGENOMICS AG
    Inventors: Christine Markert-Hahn, Dirk Block
  • Patent number: 9863001
    Abstract: The invention relates to a method for analyzing cytosine methylations in DNA sequences, according to which non-methylated cytosines are first converted into uracil while 5-methylcytosine remains unmodified. The DNA is then amplified by means of a polymerase and at least one primer whose 5 end is connected to a probe via a linker. The probe is intramolecularly hybridized onto the amplified products in accordance with the methylation state of the DNA, hybridization being detectable via different detection systems. The inventive method is particularly suitable for diagnosing and predicting cancer diseases and other diseases associated with a modification of the methylation state as well as for predicting undesired effects of medicaments.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: January 9, 2018
    Assignee: EPIGENOMICS AG
    Inventors: Reimo Tetzner, Jürgen Distler
  • Patent number: 9850532
    Abstract: The invention provides methods, nucleic acids and kits for detecting prostate cell proliferative disorders. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of said disorder, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: December 26, 2017
    Assignee: EPIGENOMICS AG
    Inventors: Andrew Z. Sledziewski, Catherine E. Lofton-Day, Reimo Tetzner, Juergen Distler, Fabian Model, Shannon Payne
  • Patent number: 9719131
    Abstract: A method is described for the detection of the degree of methylation of a specific cytosine in the sequence context 5?-CpG-3? of a genomic DNA sample. In the first step, the genomic DNA is chemically treated in such a way that the cytosine bases are converted to uracil, but not the 5-methylcytosine bases. Then segments of the genomic DNA which contain the said specific cytosine are amplified, whereby the amplified products are given a detectable label and in the following steps the extent of hybridization of the amplified products on two classes of oligonucleotides is determined by detection of the label of the amplified products, and a conclusion is made on the extent of methylation of said specific cytosine in the genomic DNA sample from the ratio of the labels detected on the two classes of oligonucleotides as a consequence of the hybridization.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: August 1, 2017
    Assignee: EPIGENOMICS AG
    Inventors: Alexander Olek, Christian Piepenbrock, Kurt Berlin, David Guetig
  • Patent number: 9695478
    Abstract: The invention provides methods, nucleic acids and kits for detecting, or for detecting and distinguishing between or among liver cell proliferative disorders or for detecting, or for detecting and distinguishing between or among colorectal cell proliferative disorders. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of and differentiation between said class of disorders, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: July 4, 2017
    Assignee: EPIGENOMICS AG
    Inventors: Catherine E. Lofton-Day, Andrew Z. Sledziewski, Ralf Lesche, Matthias Schuster, Juergen Distler, Reimo Tetzner, Thomas Hildmann, Fabian Model, Xiaoling Song
  • Patent number: 9670546
    Abstract: The invention provides methods, nucleic acids and kits for determining the prognosis of a subject having cell proliferative disorder, preferably cancer. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of said disorder, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: June 6, 2017
    Assignee: EPIGENOMICS AG
    Inventors: Dimo Dietrich, Ralf Lesche, Anne Fassbender, Manuel Krispin, Joern Dietrich
  • Patent number: 9624530
    Abstract: The present invention relates to methods and kits for preserving genomic DNA sequence complexity within chemically and/or enzymatically converted DNA by an enzyme or series of enzymes that adds a methyl group to a cytosine outside of CpG dinucleotide sequences of genomic DNA. Further, the present invention relates to methylation analysis of the genomic DNA.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 18, 2017
    Assignee: EPIGENOMICS AG
    Inventor: Joern Lewin
  • Patent number: 9605306
    Abstract: The invention provides methods, nucleic acids and kits for detecting prostate cell proliferative disorders. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of said disorder, thereby enabling the improved diagnosis and treatment of patients.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: March 28, 2017
    Assignee: EPIGENOMICS AG
    Inventors: Andrew Z. Sledziewski, Catherine E. Lofton-Day, Reimo Tetzner, Juergen Distler, Fabian Model, Shannon Payne, Dimo Dietrich
  • Patent number: 9394332
    Abstract: The present application is directed to a method for performing a bisulfite reaction to determine methylation positions in a nucleic acid, i.e. methylated and non-methylated cytosines, whereby the nucleic acid is bound to a solid phase during the deamination and/or desulfonation step of the bisulfite reaction. The solid phase is preferably a material comprising glass or silica, more preferably a glass fleece, glass membrane or a magnetic glass particle. Further, the use of a solid phase for binding a nucleic acid during the deamination and/or desulfonation step of the bisulfite reaction is disclosed and a kit containing a bisulfite reagent and a solid phase.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: July 19, 2016
    Assignee: Epigenomics AG
    Inventors: Christine Markert-Hahn, Dirk Block
  • Patent number: 9181587
    Abstract: The following application provides methods and nucleic acids for the detection of and/or differentiation between prostate cell proliferative disorders. This is achieved by the analysis of the expression status of a panel of genes, or subsets thereof.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: November 10, 2015
    Assignee: EPIGENOMICS AG
    Inventors: J. Kevin Day, Susan Cottrell, Juergen Distler, Andrew Morotti, Su Yamamura, Sharon Dekker, Yreka Ocampo, Theo Devos