Patents Assigned to Fallbrook Technologies, Inc.
  • Publication number: 20120258839
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for auxiliary power units (APU). In one embodiment, the APU includes a source of rotational power such as a combustion engine operably coupled to a continuously variable transmission (CVT). The CVT can be coupled to a load. In some embodiments, the load is provided by a generator. In one embodiment, the APU has a control system configured to control the operation of the engine and the operation of the CVT. The control system can facilitate substantially constant speed operation of the generator in the presence of variable operation of the engine. In another embodiment, the APU includes a continuously variable accessory drive (CVAD) operably coupled to an engine. The CVAD can include a continuously variable transmission operably coupled to a generator. In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Applicant: Fallbrook Technologies Inc.
    Inventors: Robert Smithson, Brad P. Pohl, Charles B. Lohr, Javier Solis, Terry Nielsen, Scott T. McBroom, Nicole Munguia
  • Publication number: 20120238386
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 20, 2012
    Applicant: Fallbrook Technologies Inc.
    Inventors: Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Scott T. McBroom
  • Publication number: 20120115667
    Abstract: Disclosed embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a CVT has a number of spherical planets in contact with an idler. Various idler assemblies can be used to facilitate to improve durability, fatigue life, and efficiency of a CVT. In one embodiment, the idler assembly has two rolling elements having contact surfaces that are angled with respect to a longitudinal axis of the CVT. In some embodiments, a bearing is operably coupled between the first and second rolling elements. The bearing is configured to balance axial force between the first and second rolling elements. In one embodiment, the bearing is a ball bearing. In another embodiment, the bearing is an angular contact bearing. In yet other embodiments, needle roller bearings are employed.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 10, 2012
    Applicant: Fallbrook Technologies Inc.
    Inventors: Charles Lohr, Brad Pohl
  • Patent number: 8171636
    Abstract: A continuously variable transmission has a number of tiltable ball-leg assemblies configured angularly about a longitudinal axis. Each ball-leg assembly is in contact with, and guided through a tilting motion by an axially translating shift cam having a convex shape. The convex shape of the shift cam can have a profile defined by a set of parametric equations. The profile of the shift cam can vary according to the location of the contact point between an idler and the ball-leg assembly as well as the amount of relative axial motion between the ball-leg assembly and the idler. The profile of the shift cam can be configured to control the axial translation of the idler relative to the change in tilt angle of the ball-leg assembly. A roll-slide factor can be used to characterize the axial translation of the idler relative to the tilt angle of the ball-leg assembly.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: May 8, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 8167759
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable accessory drives (CVAD). In one embodiment, a skew-based control system is adapted to facilitate a change in the ratio of a CVAD. In another embodiment, a skew-based control system includes a skew actuator coupled to a carrier member. In some embodiments, the skew actuator is configured to rotate a carrier member of a CVT. Various inventive traction planet assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include legs configured to cooperate with the carrier members. In some embodiments, a traction planet assembly is operably coupled to the carrier members. Embodiments of a shift cam and a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: May 1, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Brad P Pohl, Fernand A Thomassy, Charles B Lohr, Scott T McBroom
  • Patent number: 8133149
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 13, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 8123653
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: February 28, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Publication number: 20120043841
    Abstract: A transmission having a plurality of tilting balls and opposing input and output discs provides an infinite number of speed combinations over its transmission ratio range. The transmission provides multiple powerpaths and can be combined with electrical components to provide motor/generator functionality, which reduces the overall size and complexity of the motor and transmission compared to when they are constructed separately. In one embodiment, rotatable components of a continuously variable transmission are coupled separately to an electrical rotor and to an electrical stator so that the rotor and stator rotate simultaneously in opposite directions relative to one another. In other embodiments, an electrical rotor is configured to transfer torque to or from a disc that is in contact with a plurality of speed adjusters, while an electrical stator is configured to transfer torque to a shaft that is operationally coupled to the speed adjusters via an idler.
    Type: Application
    Filed: November 2, 2011
    Publication date: February 23, 2012
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventor: Donald C. Miller
  • Publication number: 20120035016
    Abstract: A variable speed transmission having a plurality of tilting balls and opposing input and output discs is illustrated and described that provides an infinite number of speed combinations over its transmission ratio range. The use of a planetary gear set allows minimum speeds to be in reverse and the unique geometry of the transmission allows all of the power paths to be coaxial, thereby reducing overall size and complexity of the transmission in comparison to transmissions achieving similar transmission ratio ranges.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Donald C. Miller, David J. Allen, Robert A. Smithson
  • Patent number: 8087482
    Abstract: A system for providing an automated axial force to a continuously variable transmission (CVT) in a wheelchair. An electronic transmission control receives one or more input signals generated by throttle position or other variables. The microprocessor generates an output signal that adjusts the axial force applied to a CVT thereby automatically adjusting the input to output ratio. The invention also provides a manually controlled variator is designed for use on a wheelchair. The manual shifter hydraulically adjusts an axial force imparted on a variator in communication with a wheelchair wheel and a hand rim. Application of the axial force causes the hand rim input and wheelchair wheel output ratio to change, permitting a wheelchair operator to manually adjust the input to output ratio to more easily operate the wheelchair.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 3, 2012
    Assignee: Fallbrook Technologies Inc.
    Inventors: David Michael Miles, Todd Russell Peters
  • Patent number: 8070635
    Abstract: A transmission having a plurality of tilting balls and opposing input and output discs provides an infinite number of speed combinations over its transmission ratio range. The transmission provides multiple powerpaths and can be combined with electrical components to provide motor/generator functionality, which reduces the overall size and complexity of the motor and transmission compared to when they are constructed separately. In one embodiment, rotatable components of a continuously variable transmission are coupled separately to an electrical rotor and to an electrical stator so that the rotor and stator rotate simultaneously in opposite directions relative to one another. In other embodiments, an electrical rotor is configured to transfer torque to or from a disc that is in contact with a plurality of speed adjusters, while an electrical stator is configured to transfer torque to a shaft that is operationally coupled to the speed adjusters via an idler.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: December 6, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventor: Donald C Miller
  • Patent number: 8066613
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 29, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 8066614
    Abstract: A variable speed transmission having a plurality of tilting balls and opposing input and output discs is illustrated and described that provides an infinite number of speed combinations over its transmission ratio range. The use of a planetary gear set allows minimum speeds to be in reverse and the unique geometry of the transmission allows all of the power paths to be coaxial, thereby reducing overall size and complexity of the transmission in comparison to transmissions achieving similar transmission ratio ranges.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Fallbrook Technologies, Inc.
    Inventors: Donald C Miller, David J Allen, Robert A. Smithson
  • Publication number: 20110218072
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for infinitely variable transmissions (IVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of an IVT. In another embodiment, a control system includes a carrier member configured to have a number of radially offset slots. Various inventive carrier members and carrier drivers can be used to facilitate shifting the ratio of an IVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the carrier members. In one embodiment, the carrier member is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a carrier member is operably coupled to a carrier driver. In some embodiments, the carrier member is configured to couple to a source of rotational power. Among other things, shift control interfaces for an IVT are disclosed.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 8, 2011
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Charles B. Lohr, John W. Sherrill, Brad P. Pohl, Robert Dawson, Corey Pew
  • Publication number: 20110172050
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle (112) is adapted to receive a carrier assembly (101, 400, 600, 800) to facilitate the support of components in a CVT (100). In another embodiment, a carrier includes a stator support member (206, 304, 402, 502, 602, 802) and a stator interfacial member (208, 504). In some embodiments, the stator interfacial member is configured to interact with planet subassemblies of a CVT. Various inventive planet subassemblies (108, 406, 806) and idler assemblies (109, 700) can be used to facilitate shifting the ratio of a CVT. In some embodiments, the planet subassemblies include legs (244, 2444, 424, 810) configured to have a sliding interface with a carrier assembly.
    Type: Application
    Filed: June 23, 2008
    Publication date: July 14, 2011
    Applicant: Fallbrook Technologies, Inc.
    Inventors: Jon M. Nichols, Matthew P. Simister, Daniel J Dawe, Charles B Lohr, Timothy M Obrzut
  • Patent number: 7976426
    Abstract: A continuously variable transmission (CVT) having a number of tiltable ball-leg assemblies configured angularly about a longitudinal axis. Each ball-leg assembly is in contact with, and guided through a tilting motion by an axially translating shift cam having a convex shape. The convex shape of the shift cam can have a profile defined by a set of parametric equations. In one embodiment, the profile of the shift cam vary according to the location of the contact point between an idler and the ball-leg assembly as well as the amount of relative axial motion between the ball-leg assembly and the idler. In some embodiments, the profile of the shift cam can be configured to control the axial translation of the idler relative to the change in tilt angle of the ball-leg assembly. In other embodiments, a roll-slide factor can be used to characterize the axial translation of the idler relative to the tilt angle of the ball-leg assembly.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: July 12, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 7967719
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: June 28, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 7963880
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: June 21, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Matthew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Patent number: 7959533
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive idler-and-shift-cam assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: June 14, 2011
    Assignee: Fallbrook Technologies Inc.
    Inventors: Jon M. Nichols, Brad P. Pohl, Daniel J. Dawe, Oronde J. Armstrong, Charles B. Lohr, Loren T. McDaniel, Matthew P. Simister, Fernand A. Thomassy, Ghayyurul I. Usmani, Paul M. Elhardt, Terry L. Stewart, Peter D. Poxton, Elton L. Eidson
  • Publication number: 20110088503
    Abstract: A shifter for use with a continuously variable transmission includes a grip portion and a hub portion. Specifically, the shifter is designed for use on a bicycle, but could also be used with any light vehicle. The grip portion is characterized by a rotatable adjuster that is coupled to a cable. The cable is also coupled to a hub portion. As the adjuster is rotated, the cable is pulled, in turn rotating a pulley assembly in the hub portion. As the pulley assembly is rotated, it advances a rod within a continuously variable transmission. The rod adjusts the power adjusters as described above. The grip portion is also unique in its display of information to the rider. The grip portion includes a display showing the ratio of input to output. The display also includes a filament that curves as the ration is adjusted. A high ratio renders the filament flat while the filament takes on a steep curve as the ratio is adjusted to make riding up hills easier.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: Fallbrook Technologies Inc.
    Inventors: Oronde Armstrong, Chris Barrow, Paul Elhardt, Henry Mack, Stephen Miggels, Stephen Tsortsoros