Patents Assigned to Federal Mogul Ignition Company
  • Patent number: 8844490
    Abstract: A corona igniter 20 includes an insulator 28 surrounding a central electrode 24 and a shell 30 surrounding the insulator 28. The shell 30 presents a shell gap 38 having a shell gap width ws between a shell lower end 34 and a shell inner surface 90 or shell outer surface 92. The shell 30 has a shell thickness ts decreasing toward the shell lower end 34 allowing the shell gap width ws to increase toward the shell lower end 34. The shell gap 38 is open at the shell lower end 34 allowing air to flow therein, and the shell gap width ws is greatest at the shell lower end 34. The increasing shell gap width ws enhances corona discharge 22 along the insulator 28 between the central electrode 24 and shell 30.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 30, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventors: John Antony Burrows, James D. Lykowski, Alfred Permuy, Keith Hampton
  • Patent number: 8839753
    Abstract: A corona igniter 20 includes an electrode gap 28 between the central electrode 22 and the insulator 32 and a shell gap 30 between the insulator 32 and the shell 36. An electrically conductive coating 40 is disposed on the insulator 32 along the gaps 28, 30 to prevent corona discharge 24 in the gaps 28, 30 and to concentrate the energy at a firing tip 58 of the central electrode 22. The electrically conductive coating 40 is disposed on an insulator inner surface 64 and is spaced radially from the electrode 22. The electrically conductive coating 40 is also disposed on the insulator outer surface 72 and is spaced radially from the shell 36. During operation of the igniter 20, the electrically conductive coating 40 provides a reduced voltage drop across the gaps 28, 30 and a reduced electric field spike at the gaps 28, 30.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 23, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventors: John Antony Burrows, James D. Lykowski, John William Hoffman
  • Patent number: 8840291
    Abstract: A vehicle lamp assembly includes a housing having an inner reflective surface with predetermined optics and an outer surface. The inner and outer surfaces extend between proximal and distal ends. A lens is attached to the distal end of the housing. The lens and the inner reflective surface bound an enclosed chamber of the assembly. The assembly further includes a heat sink subassembly. The subassembly includes a heat sink and an electronic module. The electronic module has PCB electronics and at least one LED coupled in electrical communication with one another. The subassembly is mounted to the proximal end of the housing externally from the enclosed chamber.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: September 23, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventors: Ralf Meyer-Wendt, Xiaolu Chen, John Dominick, Stephen Kowalchik
  • Publication number: 20140261270
    Abstract: A corona igniter comprises an electrode with a central extended member extending along a central axis and a crown extending radially outwardly from the central extended member. The central extended member has an extended length and the crown has a crown length. The extended length is greater than the crown length such that the extended member approaches a piston more closely than the crown. In addition, the firing tips of the crown each present a first spherical radius which is less than a second spherical radius of the central extended member. Thus, if arcing occurs, it forms from the central extended member, rather than from the crown. Accordingly, the firing tips of the crown experience less wear and remain sharp. In addition, due to the sizes of the spherical radii, corona discharge is more likely to form from the firing tips than from the central extended member.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Federal-Mogul Ignition Company
    Inventors: John A. Burrows, Kristapher Mixell
  • Publication number: 20140268480
    Abstract: A corona igniter assembly 20 comprises an ignition coil assembly 22, a firing end assembly 24, and a metal tube 26 connecting the ignition coil assembly 22 to the firing end assembly 24. A rubber boot 28 is disposed in the metal tube 26 and compressed symmetrically between a coil output member 30 of the ignition coil assembly 22 and an insulator 42 of the firing end assembly 24. Thus, the rubber boot 28 fills any air gaps and provides a hermetic seal between the ignition coil assembly 22 and the firing end assembly 24 to prevent unwanted corona discharge from forming from those air gaps.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Federal-Mogul Ignition Company
    Inventors: Vittorio Urciuoli, Giulio Milan, Massimo Augusto Dal Re, Paolo Pignatti
  • Publication number: 20140265812
    Abstract: A method of manufacturing an electrode material for use in spark plugs and other ignition devices. The electrode material may be manufactured into a desirable form by hot-forming a layered structure that includes a ruthenium-based material core, an iridium-based interlayer disposed over an exterior surface of the ruthenium-based material core, and a nickel-based cladding disposed over an exterior surface of the iridium-based material interlayer. The elongated layered wire produced by the hot-forming then has its nickel-based cladding removed to derive an elongated electrode material wire that includes the ruthenium-based material core encased in the iridium-based material. The elongated electrode material wire can be used to make many different spark plug/ignition device components.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventor: Shuwei Ma
  • Publication number: 20140239796
    Abstract: A capacitive discharge welding method is used to join firing tips, such as those made from various precious metals, to spark plug electrodes. In one embodiment, charged capacitors or other energy storage devices coupled to welding electrodes quickly release stored energy so that a peak weld power and maximum interface temperature is quickly established, followed by a rapid decline in weld power and interface temperature. The resulting capacitive discharge weld joint may include solidified molten material from both the firing tip and the electrode and possess a number of other desirable qualities.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 28, 2014
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventor: Frederick J. Quitmeyer
  • Publication number: 20140238366
    Abstract: A corona discharge (24) ignition includes an electrode (38) emitting a radio frequency electric field and providing a corona discharge (24) to ignite a combustible mixture. The system includes a controlled high voltage energy supply (52) providing energy to a main energy storage (28) at a first main voltage. A fixed high voltage energy supply (54) provides extra energy to an extra energy storage (26) at a second extra voltage, which is greater than the first main voltage. While the corona discharge (24) is being provided, the energy of the main energy storage (28), but not the extra energy storage (26), is provided to the electrode (38). When the corona discharge (24) switches to arc discharge, the extra energy of the extra energy storage (26) is provided to the corona igniter (22) to enhance the arc discharge and provide reliable ignition until the corona discharge (24) is restored.
    Type: Application
    Filed: May 7, 2014
    Publication date: August 28, 2014
    Applicant: Federal-Mogul Ignition Company
    Inventor: John Antony Burrows
  • Patent number: 8816577
    Abstract: A spark plug (20) includes a center electrode (24) and a ground electrode (22). The electrodes (22, 24) include a core (26) formed of a copper (Cu) alloy and a clad (28) formed of a nickel (Ni) alloy enrobing the core (26). The Cu alloy includes Cu in an amount of at least 98.5 weight percent, and at least one of Zr and Cr in an amount of at least 0.05 weight percent. The Cu alloy includes a matrix of the Cu and precipitates of the Zr and Cu dispersed in the Cu matrix. The Ni alloy of the clad (28) includes Ni in an amount of at least 90.0 weight percent. The Ni alloy also includes at least one of a Group 3 element, a Group 4 element, a Group 13 element, chromium (Cr), silicon (Si), and manganese (Mn) in a total amount sufficient to affect the strength of the Ni alloy.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 26, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventors: Shuwei Ma, James D. Lykowski
  • Publication number: 20140202413
    Abstract: A spark ignition device includes a ceramic insulator with a metal shell surrounding at least a portion of the ceramic insulator. A ground electrode is attached to the shell. The ground electrode has a ground electrode sparking tip spaced from a central sparking tip by a spark gap. A first terminal is arranged in electrical communication with the central sparking tip and is configured for electrical connection with a power source. The device further includes a second terminal configured for electrical connection with the power source. The second terminal is spaced from the first terminal, with the second terminal being arranged in electrical communication with the first terminal. A heater element brings the first terminal in electrical communication with the second terminal and completes an electrical circuit. The heater element has a resistance greater than the first and second terminals thereby producing a significant source of heat.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: Federal-Mogul Ignition Company
    Inventors: John Burrows, Paul Tinwell, Robin Clarke
  • Patent number: 8786392
    Abstract: A corona igniter 20 includes a coil 24 with a plurality of copper windings 26 extending longitudinally along a coil center axis ac. A magnetic core 30 is disposed along the coil center axis ac between the windings 26 and includes a plurality of discrete sections 32. The discrete sections 32 are spaced axially from one another by a core gap 34 filled with a non-magnetic gap filler 78. The magnetic core 30 has a core length lm and the coil 24 has a coil length lc less than the core length lm. A coil former 62 having a former thickness tf spaces the coil 24 from the magnetic core 30. A length difference ld between the core length lm and the coil length lc is preferably equal to or greater than the former thickness tf.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: July 22, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventor: John Antony Burrows
  • Publication number: 20140182538
    Abstract: The invention provides a system and method for controlling corona discharge. A driver circuit provides energy to the corona igniter and detects any arc formation. Optionally, in response to each arc formation, the energy provided to the corona igniter is shut off for a short time to dissipate the arc. Once the arc dissipates, the energy is applied again to restore the corona discharge. The driver circuit obtains information relating to the corona discharge, such as timing and number of arc formations. A control unit adjusts the energy provided to the corona igniter, shut-off time, or the duration of the corona event based on the information. The adjusted energy levels and duration are applied during subsequent corona events. For example, the voltage level could be reduced or the shutoff time could be increased to limit arc formations and increase the size of the corona discharge during the subsequent corona events.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: Federal-Mogul Ignition Company
    Inventors: John Antony Burrows, John E. Miller, Kristapher I. Mixell, James D. Lykowski
  • Patent number: 8766519
    Abstract: An electrode material for use with spark plugs and other ignition devices, where the electrode material includes ruthenium (Ru), plus one or more additional constituents like precious metals, refractory metals, active elements, metal oxides, or a combination thereof. In one example, the electrode material is a multi-phase material that has a matrix phase including ruthenium (Ru) and one or more precious metals, refractory metals and/or active elements, and a dispersed phase including a metal oxide. The metal oxide may be provided in particle form or fiber/whisker form, and is dispersed throughout the matrix phase. A powder metallurgy process for forming the electrode material into a spark plug electrode is also provided.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 1, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventor: Shuwei Ma
  • Publication number: 20140174392
    Abstract: The invention provides a system and method for controlling corona discharge and arc formations during a single corona event, i.e. intra-event control. A driver circuit provides energy to the corona igniter and detects any arc formation. In response to each arc formation, the energy provided to the corona igniter is shut off for short time. The driver circuit also obtains information about the arc formations, such as timing of the first arc formation and number of occurrences. A control unit then adjusts the energy provided to the corona igniter after the shut off time and during the same corona event based on the information about the arc formations. For example, the voltage level could be reduced or the shut-off time could be increased to limit arc formations and increase the size of the corona discharge during the same corona event.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 26, 2014
    Applicant: Federal-Mogul Ignition Company
    Inventors: John Antony Burrows, John E. Miller, Kristapher I. Mixell, James D. Lykowski
  • Patent number: 8760067
    Abstract: A system and method for controlling an arc formation in corona discharge ignition system is provided. The system includes a corona igniter for receiving energy at a voltage and providing a corona discharge. An energy supply providing the energy to the corona igniter at a voltage. The system also includes a corona controller for initiating a decrease in the voltage of the energy provided to the corona igniter in response to the onset of arc formation. The voltage is decreased until the arcing is depleted, and then the voltage is increased again to resume the corona discharge. Controlling the arc formation provides improved energy efficiency during operation of the corona discharge ignition system.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: June 24, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventor: John Antony Burrows
  • Patent number: 8760044
    Abstract: An electrode material may be used in spark plugs and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. In one embodiment, the electrode material has one or both of iridium (Ir) or ruthenium (Ru), and has rhenium (Re).
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: June 24, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventor: Shuwei Ma
  • Patent number: 8749126
    Abstract: A corona igniter 20 includes a central electrode 34 for receiving a high radio frequency voltage from a power source and emitting a radio frequency electric field to ionize a fuel-air mixture and provide a corona discharge 22. The corona igniter 20 includes an insulator 38 extending along the central electrode 34 longitudinally past the central electrode 34 to an insulator firing end 40. The insulator firing surface 42 and the center axis A present an angle ? of not greater than 90 degrees therebetween, for example the insulator firing surface may be concave. The central electrode 34 may also include a firing tip 50, in which case the insulator firing surface 42 surrounds all sides of the firing tip 50. The geometry of the insulator firing surface 42 concentrates and directs the corona discharge 22.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventors: Patrick Durham, James Lykowski
  • Patent number: 8726871
    Abstract: A corona discharge (24) ignition includes an electrode (38) emitting a radio frequency electric field and providing a corona discharge (24) to ignite a combustible mixture. The system includes a controlled high voltage energy supply (52) providing energy to a main energy storage (28) at a main voltage. A fixed high voltage energy supply (54) provides extra energy to an extra energy storage (26) at an extra voltage, which is greater than the main voltage. While the corona discharge (24) is being provided, the energy of the main energy storage (28), but not the extra energy storage (26), is provided to the electrode (38). When the corona discharge (24) switches to arc discharge, the extra energy of the extra energy storage (26) is provided to the corona igniter (22) to enhance the arc discharge and provide reliable ignition until the corona discharge (24) is restored.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: May 20, 2014
    Assignee: Federal-Mogul Ignition Company
    Inventor: John Antony Burrows
  • Patent number: 8707922
    Abstract: A spark ignition device includes a ceramic insulator with a metal shell surrounding at least a portion of the ceramic insulator. A ground electrode is attached to the shell. The ground electrode has a ground electrode sparking tip spaced from a central sparking tip by a spark gap. A first terminal is arranged in electrical communication with the central sparking tip and is configured for electrical connection with a power source. The device further includes a second terminal configured for electrical connection with the power source. The second terminal is spaced from the first terminal, with the second terminal being arranged in electrical communication with the first terminal. A heater element brings the first terminal in electrical communication with the second terminal and completes an electrical circuit. The heater element has a resistance greater than the first and second terminals thereby producing a significant source of heat.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: April 29, 2014
    Assignee: Federal Mogul Ignition Company
    Inventors: John Burrows, Paul Tinwell, Robin Clarke
  • Publication number: 20140103792
    Abstract: An electrode material that may be used in spark plugs and other ignition devices for igniting an air/fuel mixture in an engine. The electrode material has a metal ceramic composite structure and includes a particulate component embedded or dispersed within a matrix component such that the electrode material has a multi-phase microstructure. In an exemplary embodiment, the matrix component includes platinum (Pt) and one or more additive metals like nickel (Ni) or palladium (Pd), and the particulate component includes an electrically conductive ceramic, such as titanium diboride (TiB2). A liquid phase or a solid phase sintering process may be used, depending on the particular constituency of the electrode material.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 17, 2014
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventor: Shuwei Ma