Patents Assigned to FLEXENERGY
  • Patent number: 11143458
    Abstract: A heat exchanger includes an outer tube having a first axial end and a second axial end, and a pressure barrier tube positioned generally concentric to and within the outer tube such that a first flowpath is defined axially through at least a portion of the outer tube and radially between the outer tube and the pressure barrier tube. A second flowpath is defined within and at least partially axially through the pressure barrier tube. The heat exchanger also includes a first plurality of fins coupled to and extending between the outer tube and the pressure barrier tube, through the first flowpath, and a second plurality of fins coupled to and extending radially inward from the pressure barrier tube, through the second flowpath. A first fluid in the first flowpath exchanges heat with a second fluid in the second flowpath via heat transfer through the first plurality of fins, the pressure barrier tube, and the second plurality of fins.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 12, 2021
    Assignee: FLEXENERGY ENERGY SYSTEMS, INC.
    Inventors: Brian Finstad, Gary Manter, Christopher David Bolin
  • Patent number: 10222129
    Abstract: A heat exchanger includes a casing having a first inlet, a first outlet, a second inlet, and a second outlet, and a plate assembly positioned between the first inlet and the first outlet and between the second inlet and the second outlet and at least partially in the casing, the plate assembly is being configured to transfer heat between a first fluid and a second fluid. The heat exchanger also includes a first plenum connecting a first side of the plate assembly and configured to direct the first fluid from first inlet to the plate assembly, and a second plenum connecting a second side of the plate assembly and configured to direct the first fluid from the plate assembly to the first outlet. An exterior of the second plenum is in contact with the second fluid, and the second plenum is configured to resiliently deflect in response to thermal expansion.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: March 5, 2019
    Assignee: FLEXENERGY
    Inventors: Brian Finstad, Gary Manter
  • Patent number: 8857739
    Abstract: A combustor for a gas turbine engine is disclosed which is able to operate with high combustion efficiency, and low nitrous oxide emissions during gas turbine operations. The combustor consists of a can-type configuration which combusts fuel premixed with air and delivers the hot gases to a turbine. Fuel is premixed with air through a swirler and is delivered to the combustor with a high degree of swirl motion about a central axis. This swirling mixture of reactants is conveyed downstream through a flow path that expands; the mixture reacts, and establishes an upstream central recirculation flow along the central axis. A cooling assembly is located on the swirler co-linear with the central axis in which cooler air is conveyed into the prechamber between the recirculation flow and the swirler surface.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 14, 2014
    Assignee: Flexenergy Energy Systems, Inc.
    Inventors: Yimin Huang, Shaun Sullivan, Brian Finstad, Alexander Haplau-Colan
  • Publication number: 20130232983
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Boris A. Maslov
  • Publication number: 20130233288
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Mark SCHNEPEL
  • Publication number: 20130232984
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve Lampe, Douglas Hamrin
  • Publication number: 20130236371
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Boris A. MASLOV
  • Publication number: 20130236840
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FlexEnergy, Inc.
    Inventors: Boris A. MASLOV, Jeffrey ARMSTRONG
  • Publication number: 20130232940
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Jeffrey ARMSTRONG
  • Publication number: 20130232942
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FlexEnergy, Inc.
    Inventor: Jim Watts
  • Publication number: 20130233256
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Mark SCHNEPEL
  • Publication number: 20130232939
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FlexEnergy, Inc.
    Inventors: Jeffrey ARMSTRONG, Richard MARTIN, Douglas HAMRIN
  • Publication number: 20130232945
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FlexEnergy, Inc.
    Inventors: Jeffrey ARMSTRONG, Richard MARTIN, Douglas HAMRIN
  • Publication number: 20130232876
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Jeffrey ARMSTRONG, Boris A. MASLOV
  • Publication number: 20130236839
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve Lampe, Douglas Hamrin
  • Publication number: 20130232874
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FlexEnergy, Inc.
    Inventor: Boris A. MASLOV
  • Publication number: 20130236370
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventor: Boris A. MASLOV
  • Publication number: 20130233213
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Richard MARTIN, Jeffrey ARMSTRONG, Douglas HAMRIN
  • Publication number: 20130232982
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FlexEnergy, Inc.
    Inventor: Boris A. Maslov
  • Publication number: 20130236372
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Thomas Renau Denison, Boris A. Maslov