Patents Assigned to FORMERICA OPTOELECTRONICS INC.
  • Publication number: 20240134136
    Abstract: An optical transceiver module temperature control device includes a processor, a printed circuit board assembly, an optical transceiver module and a temperature adjustment element. The processor is configured to measure an ambient temperature. The printed circuit board assembly includes a first side and a second side. The first side is opposite to the second side. The optical transceiver module is disposed on the first side of the printed circuit board assembly. The temperature adjustment element is coupled to the processor and disposed on the second side of the printed circuit board assembly. The processor is configured to generate a temperature adjustment signal according to the ambient temperature and an operating temperature range. The temperature adjustment element is configured to perform heat exchange with the printed circuit board assembly according to the temperature adjustment signal to adjust a temperature of the optical transceiver module into the operating temperature range.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 25, 2024
    Applicant: Formerica Optoelectronics, Inc.
    Inventors: Yun-Cheng HUANG, Yi-Nan SHIH, Chih-Chung LIN, Yun-Chin TSAI
  • Publication number: 20240134246
    Abstract: An optical switch module includes a housing, at least two first collimators, at least two second collimators, a relay, and plural prisms. The housing has an accommodating space, a first sidewall, and a second sidewall. The first collimators are located on the first sidewall. Each of the first collimators connects even number of first fibers. The second collimators are located on the second sidewall. Each of the second collimators connects even number of second fibers. The second collimators are respectively aligned with the first collimators. The relay is located in the accommodating space and has a rotation support. The prisms are located on the rotation support and respectively between the first and second collimators. The rotation support is configured to enable at least one of the prisms to be in light transmission paths between the first fibers and the second fibers.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 25, 2024
    Applicant: Formerica Optoelectronics, Inc.
    Inventors: Hung-Fu YEH, Ching-Jen WEN, Ping-Fang TSAI
  • Publication number: 20240138111
    Abstract: The immersion cooling apparatus includes a cooling tank having a cooling liquid; a cable having a first end and a second end and a protection tube wrapping the cable. The first end connects a first connector, and the second end connects a second connector. At least one of the first end and the second end is located in the cooling tank. The protection tube is configured to separate the cable and the cooling liquid, and the protection tube includes at least one of a hard tube, a soft tube, or a thermal shrinking tube.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 25, 2024
    Applicant: Formerica Optoelectronics, Inc.
    Inventors: Joseph Chen-Kwo Liu, Peter Sin-Te Liu, Chih-Chun CHIANG
  • Patent number: 9461404
    Abstract: A connector is provided, including a connector body, a fastener and an elastomer. The fastener is pivoted on the connector body with a hook end and a press end positioned on both sides thereof, respectively. The two ends of the elastomer contact the connector body and the press end of the fastener, respectively. The connector of the invention may accomplish plugging and unplugging of an electronic equipment in a single hand press way without bracer arrangement by a configuration of the press end, and may maintain an engagement state between the hook end and the electronic equipment with an arrangement of the elastomer.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: October 4, 2016
    Assignee: FORMERICA OPTOELECTRONICS INC.
    Inventors: Tung-Yi Yu, Sheng-Wei Wu
  • Patent number: 9325417
    Abstract: An optical-electrical converter includes a converter body, two optical-electrical conversion modules and a housing. One end of the converter body is provided with an optical fiber insertion port. The optical-electrical conversion modules are arranged on two sides of the converter body to perform conversion of optical-electrical signal, respectively. The housing is used for covering a portion of the converter body to shield the optical-electrical conversion modules. Because of multiple optical-electrical conversion modules provided by the optical-electrical converter, the arrangement number and volume of the optical-electrical converter in optical fiber network equipment may be reduced significantly to comply with the miniaturization trend of optical fiber network equipment.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: April 26, 2016
    Assignee: FORMERICA OPTOELECTRONICS INC.
    Inventors: Tung-Yi Yu, Sheng-Wei Wu, Chien-Te Cheng
  • Patent number: 9312957
    Abstract: An optical transceiver device has an optical transceiver component, an O/E conversion substrate and a switch control substrate. The optical transceiver component is connected to the first, second optical fiber network equipments for the transmission of optical signal, respectively. The O/E conversion substrate is electrically connected to an in-line equipment at a first location for transmission of electrical signal, and may convert the received optical signal into the electrical signal or convert the received electrical signal into the optical signal. The switch control substrate is electrically connected with an optical switching switch and is connected with the in-line equipment at a second location to receive a control signal for the optical switch from the in-line equipment such that the optical switching switch operates at an normal mode or an bypass mode to guarantee normal network communication of the first, second optical network equipment.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: April 12, 2016
    Assignee: FORMERICA OPTOELECTRONICS INC.
    Inventors: Sean Jiang, Tung-Yi Yu, Shan-Ju Yang, Sheng-Wei Wu, Shih-Chi Cheng
  • Publication number: 20140286636
    Abstract: An optical transceiver device has an optical transceiver component, an O/E conversion substrate and a switch control substrate. The optical transceiver component is connected to the first, second optical fiber network equipments for the transmission of optical signal, respectively. The O/E conversion substrate is electrically connected to an in-line equipment at a first location for transmission of electrical signal, and may convert the received optical signal into the electrical signal or convert the received electrical signal into the optical signal. The switch control substrate is electrically connected with an optical switching switch and is connected with the in-line equipment at a second location to receive a control signal for the optical switch from the in-line equipment such that the optical switching switch operates at an normal mode or an bypass mode to guarantee normal network communication of the first, second optical network equipment.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 25, 2014
    Applicant: FORMERICA OPTOELECTRONICS INC.
    Inventors: SEAN JIANG, TUNG-YI YU, SHAN-JU YANG, SHENG-WEI WU, SHIH-CHI CHENG