Patents Assigned to Franklin and Marshall College
  • Patent number: 9829183
    Abstract: A portable copystand is disclosed having a foldable base. A first adjustable arm and a second adjustable arm are provided. The portable copystand also has an ultraviolet light source and a visible spectrum light source.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: November 28, 2017
    Assignee: Franklin and Marshall College
    Inventors: J. Kenneth Krebs, Shawn O'Bryhim
  • Patent number: 9790305
    Abstract: The present invention is directed towards a protein-polymer composition having a protein with a site-specifically incorporated unnatural amino acid initiator and a covalently attached polymer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 17, 2017
    Assignee: Franklin and Marshall College
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Publication number: 20160251467
    Abstract: The present invention is directed towards a protein-polymer composition having a protein with a site-specifically incorporated unnatural amino acid initiator and a covalently attached polymer.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 1, 2016
    Applicant: FRANKLIN AND MARSHALL COLLEGE
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Publication number: 20160113393
    Abstract: A portable copystand is disclosed having a foldable base. A first adjustable arm and a second adjustable arm are provided. The portable copystand also has an ultraviolet light source and a visible spectrum light source.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Applicant: FRANKLIN AND MARSHALL COLLEGE
    Inventors: J. Kenneth Krebs, Shawn O'Bryhim
  • Patent number: 9243274
    Abstract: This invention pertains to methods for producing homogeneous recombinant proteins that contain polymer initiators at defined sites. The unnatural amino acid, 4-(2?-bromoisobutyramido)phenylalanine of formula 1, was designed and synthesized as a molecule comprising a functional group further comprising an initiator for an atom-transfer radical polymerization (‘ATRP”) that additionally would provide a stable linkage between the protein and growing polymer. We evolved a Methanococcus jannaschii (Mj) tyrosyl-tRNA synthetase/tRNACUA pair to genetically encode this unnatural amino acid in response to an amber codon. To demonstrate the utility of this functional amino acid, we produced Green Fluorescent Protein with the unnatural amino acid initiator of formula 1 site-specifically incorporated on its surface (GFP-1).
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: January 26, 2016
    Assignee: Franklin and Marshall College
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Publication number: 20150152461
    Abstract: This invention pertains to methods for producing homogeneous recombinant proteins that contain polymer initiators at defined sites. The unnatural amino acid, 4-(2?-bromoisobutyramido)phenylalanine of formula 1, was designed and synthesized as a molecule comprising a functional group further comprising an initiator for an atom-transfer radical polymerization (‘ATRP”) that additionally would provide a stable linkage between the protein and growing polymer. We evolved a Methanococcus jannaschii (Mj) tyrosyl-tRNA synthetase/tRNACUA pair to genetically encode this unnatural amino acid in response to an amber codon. To demonstrate the utility of this functional amino acid, we produced Green Fluorescent Protein with the unnatural amino acid initiator of formula 1 site-specifically incorporated on its surface (GFP-1).
    Type: Application
    Filed: August 5, 2014
    Publication date: June 4, 2015
    Applicant: FRANKLIN AND MARSHALL COLLEGE
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Patent number: 8816001
    Abstract: This invention pertains to methods for producing homogeneous recombinant proteins that contain polymer initiators at defined sites. The unnatural amino acid, 4-(2?-bromoisobutyramido)phenylalanine of formula 1, was designed and synthesized as a molecule comprising a functional group further comprising an initiator for an atom-transfer radical polymerization (‘ATRP”) that additionally would provide a stable linkage between the protein and growing polymer. We evolved a Methanococcus jannaschii (Mj) tyrosyl-tRNA synthetase/tRNACUA pair to genetically encode this unnatural amino acid in response to an amber codon. To demonstrate the utility of this functional amino acid, we produced Green Fluorescent Protein with the unnatural amino acid initiator of formula 1 site-specifically incorporated on its surface (GFP-1).
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 26, 2014
    Assignee: Franklin and Marshall College
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Patent number: 8673260
    Abstract: This invention relates to a process for the phase-controlled synthesis of ternary and quaternary mixed-metal sulfide nanoparticles by reacting soft metal ions with hard metal ions in a high-boiling organic solvent in the presence of a complexing and activating ligands to control the reactivity of the metal ions. Ternary and quaternary mixed metal sulfides nanoparticles of copper, sulfur, and iron, aluminum, tin, and silicon are preferred. This invention also relates to the phase controlled preparation of polymorphs of bornite nanoparticles and the phase controlled preparation of stabilized ?- and ?-chalconite nanoparticles.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 18, 2014
    Assignee: Franklin and Marshall College
    Inventor: Katherine Plass
  • Publication number: 20140004591
    Abstract: The present invention is directed towards a protein-polymer composition having a protein with a site-specifically incorporated unnatural amino acid initiator and a covalently attached polymer.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 2, 2014
    Applicant: FRANKLIN AND MARSHALL COLLEGE
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Publication number: 20130261259
    Abstract: This invention pertains to methods for producing homogeneous recombinant proteins that contain polymer initiators at defined sites. The unnatural amino acid, 4-(2?-bromoisobutyramido)phenylalanine of formula 1, was designed and synthesized as a molecule comprising a functional group further comprising an initiator for an atom-transfer radical polymerization (‘ATRP”) that additionally would provide a stable linkage between the protein and growing polymer. We evolved a Methanococcus jannaschii (Mj) tyrosyl-tRNA synthetase/tRNACUA pair to genetically encode this unnatural amino acid in response to an amber codon. To demonstrate the utility of this functional amino acid, we produced Green Fluorescent Protein with the unnatural amino acid initiator of formula 1 site-specifically incorporated on its surface (GFP-1).
    Type: Application
    Filed: March 7, 2013
    Publication date: October 3, 2013
    Applicant: FRANKLIN AND MARSHALL COLLEGE
    Inventors: Ryan A. Mehl, Krzysztof Matyjaszewski, Saadyah Averick
  • Publication number: 20130171056
    Abstract: This invention relates to a process for the phase-controlled synthesis of ternary and quaternary mixed-metal sulfide nanoparticles by reacting soft metal ions with hard metal ions in a high-boiling organic solvent in the presence of a complexing and activating ligands to control the reactivity of the metal ions. Ternary and quaternary mixed metal sulfides nanoparticles of copper, sulfur, and iron, aluminum, tin, and silicon are preferred. This invention also relates to the phase controlled preparation of polymorphs of bornite nanoparticles and the phase controlled preparation of stabilized ?- and ?-chalconite nanoparticles.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 4, 2013
    Applicant: FRANKLIN AND MARSHALL COLLEGE
    Inventor: FRANKLIN AND MARSHALL COLLEGE
  • Patent number: 7776535
    Abstract: This invention relates, in part, to newly identified polynucleotides, polypeptides, variants and derivatives thereof; processes for making the polynucleotides and the polypeptides, and their variants and derivatives; and uses of the polynucleotides, polypeptides, variants and derivatives. The invention also relates to compositions of orthogonal aminoacyl-tRNA synthetases, and pairs of orthogonal aminoacyl-tRNA synthetases, and orthogonal tRNAs that incorporate fluorinated amino acids into proteins in response to selector codons. The present invention also includes translation biochemistry methods for site-specific incorporation of fluorinated amino acids, for example, 18F- or 19F-labelled amino acids, into proteins or peptides. Such amino acids may be used as an NMR probe for characterizing protein structure, dynamics, and reactivity or for radionuclide imaging (e.g., PET). Fluorinated amino acids may also be used to stabilize proteins or peptides.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: August 17, 2010
    Assignee: Franklin and Marshall College
    Inventor: Ryan A. Mehl
  • Publication number: 20070218483
    Abstract: This invention relates, in part, to newly identified polynucleotides, polypeptides, variants and derivatives thereof; processes for making the polynucleotides and the polypeptides, and their variants and derivatives; and uses of the polynucleotides, polypeptides, variants and derivatives. The invention also relates to compositions of orthogonal aminoacyl-tRNA synthetases, and pairs of orthogonal aminoacyl-tRNA synthetases, and orthogonal tRNAs that incorporate fluorinated amino acids into proteins in response to selector codons. The present invention also includes translation biochemistry methods for site-specific incorporation of fluorinated amino acids, for example, 18F- or 19F-labelled amino acids, into proteins or peptides. Such amino acids may be used as an NMR probe for characterizing protein structure, dynamics, and reactivity or for radionuclide imaging (e.g., PET). Fluorinated amino acids may also be used to stabilize proteins or peptides.
    Type: Application
    Filed: February 5, 2007
    Publication date: September 20, 2007
    Applicant: FRANKLIN AND MARSHALL COLLEGE
    Inventor: Ryan Mehl