Patents Assigned to Freeport-McMoran Corporation
  • Patent number: 8124556
    Abstract: Accordingly, in various embodiments, the present invention provides methods for making electrochemically active materials. Methods include making an electrochemically active material by reacting a platinum group metal salt in a organic solvent to yield a mixture, then heating the mixture to create a metal-organic solvent complex and an acid, followed by removing at least a portion of the acid, and yielding an electrochemically active material comprising the metal-organic solvent complex. In an exemplary embodiment, the resulting electrochemically active material may be used for coating an electrode.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: February 28, 2012
    Assignee: Freeport-McMoran Corporation
    Inventors: Scot P Sandoval, Michael D Waite, Casey J Clayton
  • Patent number: 8118907
    Abstract: A system and method for recovering a metal value from a metal-bearing ore material are provided. A metal-bearing ore can be mixed with certain substances and to form an agglomerated ore. In an intermediate state, between agglomeration and heap formation, bacteria can be added to the metal-bearing ore material to produce an augmented ore. The augmented ore can then be formed into a heap.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: February 21, 2012
    Assignee: Freeport-McMoran Corporation
    Inventors: John Lawrence Uhrie, Gabe Bowman, Cristian Alejandro Caro Matus, Percy Mayta, Scott Hoenecke, Manuel Chavez
  • Publication number: 20120018300
    Abstract: An electrode for use in producing copper in either a conventional electrowinning cell or the direct electrowinning cell is provided. The electrode includes a hanger bar and an electrode body coupled with the hanger bar. The electrode body includes at least one conductor rod having a core and an outer layer surrounding the core and a substrate coupled with the conductor rod.
    Type: Application
    Filed: September 29, 2011
    Publication date: January 26, 2012
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Scot P. Sandoval, Casey J. Clayton, Timothy G. Robinson, Christopher John Zanotti, Martin Kim Zanotti
  • Publication number: 20110299225
    Abstract: Various embodiments provide an electrode comprising a conductive substrate, a first layer of a mixture comprising iridium oxide in a crystalline phase and tantalum oxide in an amorphous phase on a portion of an outer surface of the conductive substrate, and a second layer of the mixture comprising iridium oxide in an amorphous phase and tantalum oxide in an amorphous phase on an outer surface of the first layer.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Scot P. Sandoval, Michael D. Waite, Masatsugu Morimitsu, Casey J. Clayton
  • Publication number: 20110284369
    Abstract: In various embodiments, the present invention provides an electrolytic cell contact bar having a first pole and a pair of second poles. The second poles are opposite in charge to the first pole and each of the pair of second poles are adjacent to and parallel to the first pole. In various embodiments, the contact bar may include an electrode holder capable of holding at least one electrode.
    Type: Application
    Filed: June 28, 2011
    Publication date: November 24, 2011
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Bret Ashford, William A. Ebert, Fernando D. Mollo Vega, Samuel Rasmussen, Timothy G. Robinson, Scot P. Sandoval
  • Publication number: 20110277593
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 17, 2011
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 8038855
    Abstract: An electrode for use in producing copper in either a conventional electrowinning cell or the direct electrowinning cell is provided. The electrode includes a hanger bar and an electrode body coupled with the hanger bar. The electrode body includes at least one conductor rod having a core and an outer layer surrounding the core and a substrate coupled with the conductor rod.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: October 18, 2011
    Assignee: Freeport-McMoran Corporation
    Inventors: Scot P. Sandoval, Casey J. Clayton, Timothy G. Robinson, Christopher John Zanotti, Martin Kim Zanotti
  • Patent number: 8022004
    Abstract: Various embodiments provide an electrode comprising a conductive substrate, a first layer of a mixture comprising iridium oxide in a crystalline phase and tantalum oxide in an amorphous phase on a portion of an outer surface of the conductive substrate, and a second layer of the mixture comprising iridium oxide in an amorphous phase and tantalum oxide in an amorphous phase on an outer surface of the first layer.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: September 20, 2011
    Assignee: Freeport-McMoran Corporation
    Inventors: Scot P Sandoval, Michael D Waite, Masatsugu Morimitsu, Casey J Clayton
  • Patent number: 8016983
    Abstract: This invention relates to a system and method for producing a metal powder product using conventional electrowinning chemistry (i.e., oxygen evolution at an anode) in a flow-through electrowinning cell. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes and/or direct electrowinning.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: September 13, 2011
    Assignee: Freeport-McMoran Corporation
    Inventors: Antonioni C. Stevens, Stanley R. Gilbert, Scot P. Sandoval, Timothy G. Robinson, John O. Marsden
  • Patent number: 8012318
    Abstract: A system and process for recovering copper from a copper-containing ore, concentrate, or other copper-bearing material to produce high quality cathode copper from a leach solution without the use of copper solvent/solution extraction techniques or apparatus. A process for recovering copper from a copper-containing ore generally includes the steps of providing a feed stream containing comminuted copper-containing ore, concentrate, or other copper-bearing material, leaching the feed stream to yield a copper-containing solution, conditioning the copper-containing solution through one or more physical or chemical conditioning steps, and electrowinning copper directly from the copper-containing solution in multiple electrowinning stages, without subjecting the copper-containing solution to solvent/solution extraction prior to electrowinning.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: September 6, 2011
    Assignee: Freeport-McMoran Corporation
    Inventors: John O Marsden, Robert E Brewer, Susan R Brewer, Joanna M Robertson, David R Baughman, Philip Thompson, Wayne W Hazen, Christel M. A. Bemelmans
  • Patent number: 8003064
    Abstract: The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution (“HGPLS”) and a low grade pregnant leach solution (“LGPLS”) to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: August 23, 2011
    Assignee: Freeport-McMoran Corporation
    Inventors: Barbara J. Savage, David G. Meadows, Wayne W. Hazen
  • Patent number: 7993501
    Abstract: In various embodiments, the present invention provides an electrolytic cell contact bar having a first pole and a pair of second poles. The second poles are opposite in charge to the first pole and each of the pair of second poles are adjacent to and parallel to the first pole. In various embodiments, the contact bar may include an electrode holder capable of holding at least one electrode.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: August 9, 2011
    Assignee: Freeport-McMoran Corporation
    Inventors: Bret Ashford, William A Ebert, Fernando D Mollo Vega, Samuel Rasmussen, Timothy G Robinson, Scot P Sandoval
  • Publication number: 20110014097
    Abstract: A system and method for producing molybdenum oxide(s) from molybdenum sulfide are disclosed. The system includes a pressure leach vessel, a solid-liquid separation stage coupled to the pressure leach vessel, a solvent-extraction stage coupled to the solid-liquid separation stage, and a base stripping stage coupled to the solvent-extraction stage. The method includes providing a molybdenum sulfide feed, subjecting the feed to a pressure leach process, subjecting pressure leach process discharge to a solid-liquid separation process to produce a discharge liquid stream and a discharge solids stream, and subjecting the discharge liquid stream to a solvent extraction and a base strip process.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 20, 2011
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Peter Amelunxen, John C. Wilmot, Chris Easton, Wayne W. Hazen
  • Publication number: 20110000337
    Abstract: The present invention relates generally to a process for removing dissolved or colloidal silica from a pregnant leach solution (“PLS”). More particularly, an exemplary embodiment of the present invention relates to a process which mixes PLS with an acid source, preferably lean electrolyte, to induce formation of colloidal silica that can then be collected and removed. Additionally, in an exemplary embodiment of the present invention, at least one silica seeding agent is added to induce formation of colloidal silica, at least one flocculant is added to induce aggregation of the colloidal silica, and a solid-liquid separation process is utilized to remove advantageous amounts or substantially all of the colloidal silica, thereby providing relief from supersaturation of dissolved silica in the metal recovery processes.
    Type: Application
    Filed: March 5, 2010
    Publication date: January 6, 2011
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: James D. Gillaspie, David R. Baughman, Dennis D. Gertenbach, Wayne W. Hazen, George Owusu, John C. Wilmot
  • Patent number: 7824633
    Abstract: A system and method for producing molybdenum oxide(s) from molybdenum sulfide are disclosed. The system includes a pressure leach vessel, a solid-liquid separation stage coupled to the pressure leach vessel, a solvent-extraction stage coupled to the solid-liquid separation stage, and a base stripping stage coupled to the solvent-extraction stage. The method includes providing a molybdenum sulfide feed, subjecting the feed to a pressure leach process, subjecting pressure leach process discharge to a solid-liquid separation process to produce a discharge liquid stream and a discharge solids stream, and subjecting the discharge liquid stream to a solvent extraction and a base strip process.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: November 2, 2010
    Assignee: Freeport-McMoran Corporation
    Inventors: Peter Amelunxen, John C. Wilmot, Chris Easton, Wayne W. Hazen
  • Publication number: 20100224484
    Abstract: This invention relates to a system and method for producing a metal powder product using conventional electrowinning chemistry (i.e., oxygen evolution at an anode) in a flow-through electrowinning cell. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes and/or direct electrowinning.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 9, 2010
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Antonioni C. Stevens, Stanley R. Gilbert, Scot P. Sandoval, Timothy G. Robinson, John O. Marsden
  • Publication number: 20100206741
    Abstract: A system and process for recovering copper from a copper-containing ore, concentrate, or other copper-bearing material to produce high quality cathode copper from a leach solution without the use of copper solvent/solution extraction techniques or apparatus. A process for recovering copper from a copper-containing ore generally includes the steps of providing a feed stream containing comminuted copper-containing ore, concentrate, or other copper-bearing material, leaching the feed stream to yield a copper-containing solution, conditioning the copper-containing solution through one or more physical or chemical conditioning steps, and electrowinning copper directly from the copper-containing solution in multiple electrowinning stages, without subjecting the copper-containing solution to solvent/solution extraction prior to electrowinning.
    Type: Application
    Filed: April 29, 2010
    Publication date: August 19, 2010
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: John O. Marsden, Robert E. Brewer, Susan R. Brewer, Joanna M. Robertson, David R. Baughman, Philip Thompson, Wayne W. Hazen, Christel M.A. Bemelmans
  • Publication number: 20100187125
    Abstract: The present invention relates, generally, to a method and apparatus for electrowinning metals, and more particularly to a method and apparatus for copper electrowinning using the ferrous/ferric anode reaction. In general, the use of a flow-through anode—coupled with an effective electrolyte circulation system—enables the efficient and cost-effective operation of a copper electrowinning system employing the ferrous/ferric anode reaction at a total cell voltage of less than about 1.5 V and at current densities of greater than about 26 Amps per square foot (about 280 A/m2), and reduces acid mist generation. Furthermore, the use of such a system permits the use of low ferrous iron concentrations and optimized electrolyte flow rates as compared to prior art systems while producing high quality, commercially saleable product (i.e., LME Grade A copper cathode or equivalent), which is advantageous.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: FREEPORT-MCMORAN CORPORATION
    Inventors: Scot Philip Sandoval, Timothy George Robinson, Paul Richard Cook
  • Patent number: 7736475
    Abstract: The present invention relates, generally, to a method for electrowinning copper powder, and more particularly to a method for electrowinning copper powder from a copper-containing solution using the ferrous/ferric anode reaction. In accordance with various embodiments of the present invention, a process for producing copper powder by electrowinning employs alternative anode reaction technology, namely, the ferrous/ferric anode reaction, and enables the efficient and cost-effective production of copper powder at a total cell voltage of less than about 1.5 V and at current densities of greater than 50 A/ft2. A copper powder electrowinning process in accordance with the present invention also reduces or eliminates acid mist generation that is characteristic of electrowinning operations utilizing conventional electrowinning chemistry (e.g., oxygen evolution at the anode), which is advantageous.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: June 15, 2010
    Assignee: Freeport-McMoran Corporation
    Inventors: Scot P Sandoval, Antonioni C Stevens, Timothy G Robinson, John O Marsden, Stanley R Gilbert
  • Patent number: 7736487
    Abstract: The present invention relates generally to a process for recovering copper and/or other metal values from a metal-bearing ore, concentrate, or other metal-bearing material using pressure leaching and direct electrowinning. More particularly, the present invention relates to a substantially acid-autogenous process for recovering copper from chalcopyrite-containing ore using pressure leaching and direct electrowinning in combination with a leaching, solvent/solution extraction and electrowinning operation. In accordance with one aspect of the process, at least a portion of the residue from the pressure leaching operation is directed to a heap, stockpile or other leaching operation.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: June 15, 2010
    Assignee: Freeport-McMoran Corporation
    Inventors: John O. Marsden, John C. Wilmot, Christy Green, Wayne W. Hazen, David R. Baughman