Patents Assigned to GE Electric Company
  • Patent number: 11987008
    Abstract: A method of additively manufacturing a three-dimensional object may be performed using an irradiation sequence that is based at least in part on a predicted location of one or more fume plumes emitted from the powder material when irradiated by a plurality of energy beams. An exemplary method may include determining, with a computing device, an irradiation sequence for selectively consolidating powder material using an energy beam system of an additive manufacturing machine, and providing control commands, from the computing device to the energy beam system, configured to cause the energy beam system to emit a plurality of energy beams to selectively consolidate the powder material.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: May 21, 2024
    Assignees: General Electric Company, Concept Laser GmbH, GE Additive Germany GmbH
    Inventors: Benedikt Roidl, Kishore Ramakrishnan, Changjin Yoon, Andrey I. Meshkov, Peter Pontiller-Schymura
  • Patent number: 11959393
    Abstract: An airfoil assembly for a turbine engine comprising an outer band, an inner band radially spaced inwardly from the outer band to define an annular region, and multiple airfoils circumferentially spaced within the annular region. Each corresponding airfoil of the multiple airfoils can project from a surface at a root and can further include an outer wall defining a pressure side and a suction side. A projection can extend upwardly from the surface on the pressure side and a valley can extend into the surface on the suction side to define a contour in the surface.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: April 16, 2024
    Assignees: General Electric Company, GE Avivo S.r.l.
    Inventors: Saurya Ranjan Ray, Francesco Bertini, Lyle Douglas Dailey, Jeffrey D. Clements, Jaikumar Loganathan, Simone Rosa Taddei
  • Publication number: 20240110504
    Abstract: A gas turbine engine includes a fan located at a forward portion of the gas turbine engine, and a compressor section and a turbine section arranged in serial flow order. The compressor section and the turbine section together define a core airflow path. A rotary member is rotatable with the fan and with a low pressure turbine of the turbine section. The low pressure turbine includes a rotating drum to which a first airfoil structure is connected and extends radially inward toward the rotary member. A torque frame connects the rotating drum to the rotary member and transfers torque from the first airfoil structure mounted to the rotating drum to the rotary member. The torque frame includes an inner disk mounted to the rotary member, an outer ring and a second airfoil structure formed separately from the outer ring and connected thereto by a releasable connecting structure. The second airfoil structure extends radially inward from the outer ring toward the inner disk.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicants: General Electric Company, GE Avio S.r.l.
    Inventors: Ranganayakulu Alapati, Peeyush Pankaj, Sanjeev Sai Kumar Manepalli, Bhaskar Nanda Mondal, Thomas Moniz, N V Sai Krishna Emani, Shishir Paresh Shah, Anil Soni, Praveen Sharma, Randy T. Antelo, Antonio Giuseppe D'Ettole
  • Patent number: 11945573
    Abstract: A hybrid electric aircraft equipped with gyroscopic stabilization control is provided. In one aspect, a hybrid electric aircraft includes a turbo-generator having a gas turbine engine and an electric generator operatively coupled thereto for generating electrical power. The turbo-generator defines a rotation axis. The aircraft also includes one or more electrically-driven propulsors for producing thrust for the aircraft. In addition, the aircraft includes a pivot mount operatively coupled with the turbo-generator. To provide gyroscopic stabilization control of the aircraft, the pivot mount is controlled to adjust the rotation axis of the turbo-generator relative to a prime stability axis of the aircraft. Additionally or alternatively, a rotational speed of the turbo-generator can be changed to provide gyroscopic stabilization control of the aircraft.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: April 2, 2024
    Assignees: General Electric Company, GE Avio S.r.l.
    Inventors: Mehdi Milani Baladi, Randy M Vondrell
  • Patent number: 11946419
    Abstract: Methods and apparatus to produce hydrogen gas turbine propulsion are disclosed. An example apparatus to produce propulsion in a gas turbine engine includes a fluid line to transport hydrogen from a hydrogen supply and an inert gas from an inert gas supply to a gas turbine combustor. The apparatus also includes at least one heat exchanger coupled to the fluid line to heat the inert gas and the hydrogen in the fluid line.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: April 2, 2024
    Assignees: General Electric Company, GE AVIO S.R.L.
    Inventors: David Justin Brady, Mirko Gernone, Nathan E Gibson
  • Patent number: 11933193
    Abstract: A gas turbine engine comprising a set of circumferentially adjacent airfoils, the airfoils having an outer wall defining a pressure side and a suction side extending between a leading edge and a trailing edge to define a stream-wise direction, and between a root and a tip to define a span-wise direction, and a set of dimples provide on the outer wall of at least one of the airfoils, the set of dimples spaced in at least one of the stream-wise or span-wise directions.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: March 19, 2024
    Assignees: GE Avio S.r.l., General Electric Company
    Inventors: Pratish Patil, Amit Goyal, Mahendran Manoharan, Francesco Bertini, Jaikumar Loganathan
  • Patent number: 11913408
    Abstract: A trunnion-to-disk connection for use on an open fan configuration of a gas turbine engine may include an integral trunnion and blade spar inserted through a trunnion aperture of a fan disk and supported by top bearing and a bottom bearing. A cavity can be provided between a trunnion of the integral trunnion and blade spar and the fan disk, as well as between the top bearing and bottom bearing. Pressurized hydraulic fluid can be supplied to the cavity to urge the integral trunnion and blade spar in a direction to preload the bearings. Prior to pressurization, and prior to installation of the bottom bearing, the trunnion can be inserted into a trunnion aperture of the fan disk such that an end of the trunnion extends past the fan disk to provide sufficient space to insert the bottom bearing from within the open interior of the fan disk.
    Type: Grant
    Filed: April 17, 2023
    Date of Patent: February 27, 2024
    Assignees: General Electric Company, GE Aviation Systems Limited
    Inventors: Nicholas M. Daggett, Frank Worthoff, Pawel Pres, Daryl John Burford
  • Patent number: 7015692
    Abstract: The present invention provides for a cooling system for circulating a coolant to cool the patient bore. In one embodiment, that patient bore consists of two concentric cylinders separated by spacers running either longitudinally or helically. In another embodiment of the present invention, fluid may be passed either helically or longitudinally through tubes bonded to the outer diameter of the patient bore such that the parts of the bore that are exposed to the patient are directly cooled. In a third embodiment, the RF coil could form part of the patient bore, with the helical or longitudinal fluid channels surrounding the patient bore.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: March 21, 2006
    Assignee: GE Electric Company
    Inventors: Neil Clarke, Michael B. Sellers, Michael L. Allford, Anthony Mantone