Patents Assigned to Geegah LLC
  • Patent number: 11923804
    Abstract: A temperature insensitive oscillator system. The system includes a substrate having a first surface and an opposing second surface, a CMOS device with one or more CMOS circuits attached to the first surface of the substrate, one or more piezoelectric transducers attached to an outer surface of the CMOS device, a voltage-controlled oscillator generating a RF frequency, which is transmitted as a plurality of short pulses to the one or more piezoelectric transducers, and one or more delays and oscillators using resistor and active components arranged alongside the piezoelectric transducers or on the CMOS device such that the voltage-controlled oscillator has minimal dependence on temperature, and has minimal deviation from a programmed frequency.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: March 5, 2024
    Assignee: Geegah, LLC
    Inventors: Amit Lal, Justin Kuo
  • Publication number: 20240036005
    Abstract: There is a need for miniature, low power, and remotely powered sensors that can measure moisture and reactive gas content in the environment. Examples of devices that already exist include dew-point sensors, moisture sensors, and oxygen sensors. This disclosure describes the use of high-frequency ultrasonic pulses to interrogate thin films on the imaging surface of a CMOS integrated GHz Ultrasonic imager substrate. In one embodiment the device uses a Peltier cooler and heater chip to detect the dew point by the act of moisture condensing on the surface. Integrated temperature measurement is enabled by using some of the pixels, isolated from the environment, to be reflectors that measure the phase change in the reflected signal due to the change in the speed of sound in the silicon substrate. In another embodiment a thin film is exposed to gases, changing its ultrasonic impedance, which can be used to extract the film thickness and its ultrasonic properties.
    Type: Application
    Filed: December 8, 2021
    Publication date: February 1, 2024
    Applicant: GEEGAH LLC
    Inventors: Amit Lal, Justin Kuo
  • Publication number: 20240004065
    Abstract: An GHz ultrasonic transducer pixel, alone or incorporated into imaging system with a CMOS device. The ultrasonic transducer pixel includes an ultrasonic transducer connected to a transmit circuit and a receive circuit. The transmit and receive circuits are chosen by switches. The ultrasonic transducer pixel also includes a mixer of the receive circuit positioned as a first stage in the receive circuit, a pixel select circuit comprising analog components and digital components, and a power supply conditioning circuitry.
    Type: Application
    Filed: December 22, 2020
    Publication date: January 4, 2024
    Applicant: Geegah LLC
    Inventors: Amit Lal, Justin Kuo, Ivan Bukreyev
  • Publication number: 20230353903
    Abstract: A single-chip solution for multi-modal imaging with every pixel capable of electrostatic, ultrasonic and optical imaging. The device can be configured in as much modality configurations as possible based on the types of the transducers included in the system.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 2, 2023
    Applicant: Geegah LLC
    Inventors: Serhan Ardanuc, Justin Kuo, Amit Lal
  • Publication number: 20220219197
    Abstract: A transceiver apparatus for maximizing voltage. A voltage booster or transformer is implemented using piezoelectric thin films in substrates, preferably CMOS substrates where active processing of RF signals can lead to highly integrated and inexpensive ICs. The voltage gain is achieved by cascading multiple transducers, formed in the same piezoelectric thin film, or films cascaded in series on top of each other. An array of transducers are connected in parallel or series, connected to the input or output port electrodes. Other approaches include placing the receive transformer in a location where the diffracting field from the transmitter transducer is incident on the receive transducer generating a higher ultrasonic field at the receive transformer and increasing the voltage is to connect an array of transducers, formed in the same layer, or different layers of piezoelectric layer in parallel in drive mode when the pulse is transmitted.
    Type: Application
    Filed: June 1, 2020
    Publication date: July 14, 2022
    Applicant: Geegah LLC
    Inventors: Amit Lal, Justin Kuo
  • Patent number: 10810384
    Abstract: A thin card reader (TCR) designed to reduce card-not-present fraud, in credit card transactions, and other applications where security verification is needed in remote locations. The TCR is powered by external RF power, or through a battery. Further, the TCR uses energy from an energy harvester, which converts the mechanism energy used to insert the credit card into the TCR. Energy harvesting allows the TCR to be a self-powered device, alleviating the need to charge the TCR or connect a cable thereto. TCR shifts the burden of the electronics from the card to the TCR, reducing the cost of credit cards with a biometric sensor. One TCR can be used per consumer (with many cards), reducing costs and resulting in substantial savings. The TCR also allows remote enrollment of biometrically enabled credit cards where the new card can be entered into a TCR when placed in a self-enrollment mode.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: October 20, 2020
    Assignee: Geegah LLC
    Inventor: Amit Lal
  • Publication number: 20190278953
    Abstract: A thin card reader (TCR) designed to reduce card-not-present fraud, in credit card transactions, and other applications where security verification is needed in remote locations. The TCR is powered by external RF power, or through a battery. Further, the TCR uses energy from an energy harvester, which converts the mechanism energy used to insert the credit card into the TCR. Energy harvesting allows the TCR to be a self-powered device, alleviating the need to charge the TCR or connect a cable thereto. TCR shifts the burden of the electronics from the card to the TCR, reducing the cost of credit cards with a biometric sensor. One TCR can be used per consumer (with many cards), reducing costs and resulting in substantial savings. The TCR also allows remote enrollment of biometrically enabled credit cards where the new card can be entered into a TCR when placed in a self-enrollment mode.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 12, 2019
    Applicant: Geegah LLC
    Inventor: Amit Lal