Patents Assigned to General Dynamics Corp., Electronics Division
  • Patent number: 5096880
    Abstract: A process is described for enhancing superconductor characteristics by application of strong magnetic and/or electric fields to the constituent component materials from which ceramic superconductors are being formed and during the time that these superconductors are being synthesized. This process has particular applicability to the production of superconducting oxide ceramics such as the cuprates. The required magnetic fields are on the order of 1-10 tesla and the required electric fields are on the order of 0.1-1 MV/cm. The fields act as ordering mechanisms and induce grain orientation. The magnetic field aligns the magnetic moment of the grains. The electric field induces electric polarization in the grains and then aligns them. The superconducting structure formation occurs during the sintering, cooling and annealing phases of the fabrication process. Superconductivity is strongly affected by the oxygen stoichiometry in the lattice elemental cell. Applied electric fields cause elongation of the unit cell.
    Type: Grant
    Filed: April 20, 1990
    Date of Patent: March 17, 1992
    Assignee: General Dynamics Corp./Electronics Division
    Inventor: Theodore W. Rybka
  • Patent number: 5056099
    Abstract: The rugate filter comprises a glass film which is deposited on one or both end facets of a diode laser. The glass film has a continuously varying refractive index with thickness, usually in the form of a sine wave or a "windowed" sine wave. Such a film may be deposited by ion-assisted co-deposition techniques in which the concentration of the higher refractive index material is periodically varied according to the period required to produce the desired filter. The glass of which the rugate filter is formed has an average refractive index which does not vary with temperature by more than 10.sup.-6 /.degree.C. By reflecting light at the peak wavelength back into the laser, the laser is caused to emit at the desired wavelength. Since the rugate filter selectively reflects light within a narrow band of the desired wavelength, the laser emits light within a narrow peak on the order of 10 .ANG. or less.
    Type: Grant
    Filed: September 10, 1990
    Date of Patent: October 8, 1991
    Assignee: General Dynamics Corp., Electronics Division
    Inventor: Eric M. Bradley
  • Patent number: 5043991
    Abstract: The present invention proposes a dielectric waveguide formed on a substrate of ultra-low thermal expansion glass which is assembled with a commercially available diode laser to create a temperature stabilized laser. The waveguide comprises multiple dielectric films which have equal and opposite temperature induced changes in refractive index with respect to each other into which is formed a Bragg grating, the grooves of which are sufficiently shallow to allow penetration of light into the waveguide of 1 mm to 1 cm. This provides a signal which is both narrowband and frequency stable so that the optical signal can be guaranteed to remain in a given narrow frequency band. The dielectric layers are deposited using ion assisted deposition (IAD) to provide uniform, high density films with reduced index-temperature coefficients and increased density, resulting in a waveguide with near-zero temperature variations in refractive index.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: August 27, 1991
    Assignee: General Dynamics Corp. Electronics Division
    Inventor: Eric M. Bradley
  • Patent number: 5023944
    Abstract: At least one optical resonator having a selected optical processing property is formed upon a substrate. Various property resonators may be stacked upon one another so as to share a common optical axis. A resonator typically has a pair of multilayer dielectric or semiconductor mirrors formed on opposite ends of an optical cavity with the mirrors formed in a plane parallel to the substrate surface. Temperature and mechanical stability superior to current technology is thus achievable in the structure. Additional combinations of mirrors, cavities and gratings may be formed in conjunction with the resonator.
    Type: Grant
    Filed: September 5, 1989
    Date of Patent: June 11, 1991
    Assignee: General Dynamics Corp./Electronics Division
    Inventor: Eric M. Bradley
  • Patent number: 5022038
    Abstract: An apparatus for generating a variable wavelength optical signal. The apparatus includes a signal generator for generating an optical signal. A reflector receives a portion of the optical signal and an electrical tuning signal. The reflector is responsive to the optical and tuning signals, reflecting a selected spectral component of the optical signal back to the signal generator. The generator receives the selected spectral component and responds by stabilizing the wavelength of its output at the wavelength of the spectral component.
    Type: Grant
    Filed: December 28, 1989
    Date of Patent: June 4, 1991
    Assignee: General Dynamics Corp./Electronics Division
    Inventor: Eric M. Bradley
  • Patent number: 4320402
    Abstract: A broadband microstrip antenna including two overlapping PC boards. A plurality of concentric spaced apart radiating rings and an upper ground plane layer are etched in the conductive upper surface of the upper PC board. An RF feedline network is etched in the conductive lower surface of the upper PC board. A continuous ground plane layer overlies the lower surface of the lower PC board. Plated through holes in the upper PC board connect a pair of 90.degree. spaced feed points on each of the rings to the feedline network. The feedline network is made of a plurality of conductive strips and matching stubs which are dimensioned and interconnected to permit the transmission/reception of circular polarized RF electromagnetic radiation while also matching the impedance of the rings to the impedance of a plurality of coaxial connectors mounted to the lower PC board.
    Type: Grant
    Filed: July 7, 1980
    Date of Patent: March 16, 1982
    Assignee: General Dynamics Corp./Electronics Division
    Inventor: Edwin D. Bowen
  • Patent number: 4310852
    Abstract: A real time electromagnetic radiation intensity distribution imaging system. The system includes an array of sensors, such as receiving antennas, for collecting electromagnetic radiation within a given frequency range, each of which is operable for producing a received signal in response to the collected radiation; an array of transmitting antennas geometrically corresponding at a reduced scale to the array of sensors for transmitting electromagnetic radiation within the millimeter wave range; and a branching network having a plurality of channels that individually connect the sensors to the antennas having corresponding positions in the respective arrays.
    Type: Grant
    Filed: April 8, 1980
    Date of Patent: January 12, 1982
    Assignee: General Dynamics Corp., Electronics Division
    Inventor: Gus P. Tricoles