Patents Assigned to Halliburton Energy Services, Inc.
  • Patent number: 11952533
    Abstract: A breaker composition comprising (i) an acid precursor, (ii) an accelerating agent wherein the accelerating agent comprises a Lewis acid and (iii) an aqueous fluid wherein the effective operating temperature of the breaker composition ranges from about 15° C. to about 120° C. A wellbore servicing system comprising (a) an aqueous-based drilling fluid, wherein the aqueous-based drilling fluid forms water-wet solids in the wellbore; and (b) a breaker composition comprising (i) an acid, (ii) an accelerating agent and (iii) an aqueous fluid. A method of dissolving a filtercake comprising contacting the filtercake with a breaker solution comprising (i) an acid precursor, (ii) an accelerating agent and (iii) an aqueous fluid wherein the filtercake comprises calcium carbonate.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: April 9, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bhau Anantha Kuchik, V. Ramireddy Devarapalli, Sunita S. Kadam
  • Patent number: 11953639
    Abstract: Some aspects relate to techniques for calibrating a logging tool. In some implementations, the logging tool may estimate certain unknown properties of a signal based on distances between transmitters and receivers of the logging tool and based on frequencies used by the transmitters and receivers. The logging tool may estimate the unknown properties by interpolating values into a mathematical function related to the above-noted distances and frequencies. After estimating the unknown properties, the logging tool may be deployed into the wellbore, where it may use the estimated properties to process signals received through a subsurface formation.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: April 9, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yijing Fan, Hsu-Hsiang Wu, Jin Ma, Li Pan
  • Patent number: 11952865
    Abstract: A flow control valve configured to be positioned in a tubing in a borehole formed in a subsurface formation, wherein the flow control is used to regulate a flow of an injection fluid into the subsurface formation based on a vapor-transition characteristic of a fluid contained within a chamber of the flow control valve.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: April 9, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael Linley Fripp, Fraser Murray, Stephen Michael Greci
  • Publication number: 20240110448
    Abstract: Various shaped cutters are disclosed for use on a drill bit or other wellbore forming tool. In one aspect, the shaped cutter includes a plurality of radial ridge sets. Each radial ridge set includes a plurality of ridges radially extending along the cutting table between a periphery of the cutting table and the cutter axis. The cutter may be positioned on the drill bit with one of the radial ridge sets exposed to the formation so the ridges may generate multiple cracks in the formation while drilling. After the current radial ridge set becomes worn, the cutter may be repositioned on the drill bit to expose another one of the radial ridge sets, such as during a repair, refurbish, or maintenance operation. The plurality of ridges may also exploit vibrations in the drill string to enhance rock failure.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Shilin Chen
  • Publication number: 20240110447
    Abstract: A shaped cutter has a plurality of peripheral cutting teeth to enhance drilling. The shaped cutter may enhance rock failure modes in addition to shearing, such as by indentation, impacting, scraping and grinding. The peripheral cutting teeth are located along the periphery, where cutting energy and forces may be highest. An open region radially inward of the peripheral cutting teeth may be axially recessed to increase the proportion of cutting load on the peripheral cutting teeth. The cutting table may be tapered to modify a back rake angle. The flared periphery may result in a sharper indentation angle and/or larger radius of contact. The plurality of cutting teeth may also exploit vibrations in the drill string to enhance rock failure.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Shilin Chen
  • Publication number: 20240110468
    Abstract: A system for landing a perforating gun in a particular orientation may include a landing housing securable within a wellbore and having at least one key slot extending into an inner surface of the landing housing. The system further includes a latch assembly configured to couple to the landing housing in a particular orientation. The latch assembly includes a tubular support structure and at least one key feature configured to extend and retract radially through a sidewall of the tubular support structure. The latch assembly further includes a biasing mechanism configured to bias the at least one key feature into the at least one key slot to couple the latch assembly to the landing housing. Additionally, the system includes a perforating gun system secured to the latch assembly such that the orientation of the latch assembly aims the perforating gun system in the wellbore.
    Type: Application
    Filed: October 4, 2022
    Publication date: April 4, 2024
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jason Karl Cook, Jeffery Richard Acker
  • Publication number: 20240110473
    Abstract: Aspects of the subject technology relate to systems, methods, and computer-readable media for identifying a wellbore pressure based on a predicted pump intake loss. A pump intake pressure after an intake for a submersible pump deployed downhole in a wellbore is identified. An intake loss prediction model for identifying a virtual intake loss associated with the intake for the submersible pump as a function of one or more intake loss parameters is accessed. The virtual intake loss is identified by applying the intake loss prediction model based on intake loss prediction input of the one or more intake loss parameters. A pump intake pressure before the intake for the submersible pump is determined based on the virtual intake loss and the identified pump intake pressure after the intake.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 4, 2024
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Yuzhu HU, Frank CORREDOR, Hans SJERPS, Casey Laine NEWPORT, Joshua Wayne WEBSTER, Jason Eugene HILL, Clara Susana Tandazo CASTRO
  • Publication number: 20240110446
    Abstract: A shaped cutter has a plurality of ridges extending in parallel across a cutting face to enhance drilling. The cutting table is also multi-tapered, being convex along a first cross-section perpendicular to the ridges and concave along a second cross-section parallel with the ridges. The shaped cutter may enhance rock failure modes in addition to shearing, such as by indentation, impacting, scraping and grinding. The plurality of ridges may also exploit vibrations in the drill string to enhance rock failure. The cutting table may be positioned on a drill bit to define an internal back rake angle with respect to a slope angle where the cutting table is concave. The cutting table may include a flared periphery, resulting in a sharper indentation angle and/or larger radius of contact with the formation.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Halliburton Energy Services, Inc.
    Inventor: Shilin Chen
  • Publication number: 20240110460
    Abstract: A method may comprise introducing an ultrasonic device into a wellbore with a cement slurry therein; generating ultrasonic waves with the ultrasonic device, wherein at least a portion of the ultrasonic waves are transmitted into at least a portion of the cement slurry; creating cavitation within at least the portion of the cement slurry with at least the portion of the ultrasonic waves; and allowing the cement slurry to set to form a hardened mass.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Ernst Rudolf Man Schnell, Samuel J. Lewis, Keith Edward Blaschke
  • Publication number: 20240110467
    Abstract: A perforating gun system may include a central support structure and a plurality of charges secured to the central support structure. Each charge of the plurality of charges is configured to perforate a casing and/or sidewall of a wellbore upon detonation. Further, the plurality of charges comprises a first group of charges and a second group of charges, and each charge of the second group of charges is radially offset from each charge of the first group of charges with respect to the central support structure.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher C. Hoelscher, Richard Ellis Robey
  • Patent number: 11945994
    Abstract: A method of designing a cement slurry may include: (a) selecting a target permeability and a density requirement; (b) inputting the target permeability into a permeability model and generating a proposed cement composition using the permeability model, wherein the proposed cement composition comprises at least a cement and concentration thereof, and a water and concentration thereof such that a cement slurry formed from the proposed cement composition water meet the density requirement; (c) preparing the cement slurry based on the proposed cement composition; and (d) introducing the cement slurry into a wellbore and allowing the cement slurry to set to form a hardened cement.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Siva Rama Krishna Jandhyala, Gunnar Lende, Samuel J. Lewis, Thomas Jason Pisklak
  • Patent number: 11946332
    Abstract: A swellable packer assembly that includes a mandrel, a sealing element disposed about a least a portion of the mandrel, and a degradable metal coating disposed about at least a portion of an outer surface of the sealing element. The degradable metal coating fluidly isolates the portion of an outer surface of the sealing element from an exterior of the coating and the sealing element is formed of a material responsive to exposure to a fluid in a wellbore to radially expand from the mandrel. The degradable metal coating is selectively removable from the mandrel downhole so as to expose the sealing element to the fluid in the wellbore.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: April 2, 2024
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Michael Linley Fripp, Xiaoguang Allan Zhong, Benjamin Jon Wellhoefer
  • Patent number: 11946373
    Abstract: A drilling system can be used to drill a borehole. The drilling system may include a first housing defining a main fluid flow path and a second housing defining a bypass flow path toward an annulus of a wellbore. A flow control choke may be positioned between the first housing and the second housing. The flow control choke may include a rotatable section and a stationary section that is stationary relative to the rotatable section. The stationary section may have a curved interface with the rotatable section for restricting a flow of a drilling fluid through the bypass flow path.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hasib Uddin, Alben D'Silva, Philip Park Hung Leung
  • Patent number: 11946472
    Abstract: An electric submersible pump (ESP) assembly. The ESP assembly comprises an electric motor; a seal section; a fluid intake; a charge pump assembly located downstream of the fluid intake and having an inlet in fluid communication with an outlet of the fluid intake, having a fluid mover coupled to a drive shaft, and having a fluid reservoir located downstream of the fluid mover; a gas separator located downstream of the charge pump assembly and having an inlet in fluid communication with an outlet of the charge pump assembly; an inverted shroud coupled at an upper end to the gas separator or to the charge pump assembly and coupled at a lower end to the ESP assembly below the fluid intake; and a production pump assembly located downstream of the gas separator and having an inlet in fluid communication with a liquid phase discharge port of the gas separator.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ketankumar Kantilal Sheth, Donn J. Brown, Randy Louis Mathes
  • Patent number: 11946538
    Abstract: To detect the occurrence of slippage, a transmission health monitor integrates speed measurements for an engine shaft and a transmission shaft to determine a number of revolutions for each shaft. The monitor then uses a ratio of the revolutions adjusted for a transmission gear ratio to determine whether slippage has occurred. Based on the slippage, the monitor can determine a cumulative amount of wear on a clutch for each gear and track the rate of change of slippage over time to determine a rate at which wear is occurring. The monitor can also correlate slippage calculations with torque measurements to identify operating conditions at which slippage is occurring. The monitor uses the cumulative amount of slippage, the rate of change of slippage, and the operating conditions at which slippage is occurring to estimate a remaining lifespan for a clutch or indicate that a clutch should be repaired or replaced.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Stanley Vernon Stephenson, Joe A. Beisel, Timothy Holiman Hunter
  • Patent number: 11946358
    Abstract: A method for determining the presence and bonding characteristics of elements which may include cement which may be bonded to a pipe string. The method for determining the presence and bonding may comprise disposing an acoustic logging tool in a wellbore, wherein the acoustic logging tool comprises a transmitter and a receiver, broadcasting a pressure pulse with the transmitter into a first material, wherein the pressure pulse reflects off an interface of the first material and a pipe string as a reflected pressure pulse, recording the reflected pressure pulse with a receiver, and determining an integrity of a material using a Quintero Wellbore Index.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Luis F. Quintero
  • Patent number: 11946364
    Abstract: A method for removing a guided wave noise in a time-domain may include recording one or more acoustic signals with one or more receivers at a first location, wherein the one or more acoustic signals are raw data. The method may further include determining a slowness range, estimating a downward guided wave noise by stacking the one or more acoustic signals based at least in part on a positive slowness, estimating an upward guided wave noise by stacking the one or more acoustic signals based at least in part on a negative slowness, and identifying a dominant direction of propagation. The method may further include identifying a slowness from a highest stacked amplitude for the dominant direction of propagation, estimating a downward guided wave noise with the slowness, estimating an upward guided wave noise with the slowness, and subtracting the downward guided wave noise and the upward guided wave noise.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yao Ge, Ruijia Wang, Philip William Tracadas, Yi Yang Ang, Xiang Wu
  • Patent number: 11946363
    Abstract: A method for determining discharge area in hydraulic stimulation operations is provided that includes obtaining one or more treatment data inputs from a well system, and determining a discharge area by applying the one or more treatment data inputs to a function that determines discharge area in terms of volumetric flow rate of the fracturing fluid, wherein the discharge area is a total area of all downhole exits through which the fracturing fluid exits a wellbore into a subterranean formation.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Casey Lee Cox, Kenneth Lee Borgen, Russell James Padalecki, Nathan Taylor Crawford
  • Patent number: 11946329
    Abstract: Piston-less downhole tools and piston-less pressure compensation tools are presented. The piston-less downhole tool includes a first chamber comprising a first fluid, the first fluid being a fluid that thermally expands in response to an increase in a temperature of the first fluid. The piston-less downhole tool also includes a tubular having a first end that is fluidly sealed and a second end that is in fluid communication with the first fluid, wherein the tubular is configured to expand in response to thermal expansion of the first fluid. The piston-less downhole tool further includes a second chamber configured to store a second fluid. The tubular of the piston-less downhole tool is configured to contract in response to pressure applied by the second fluid.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 2, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Irvine Brown
  • Patent number: D1021914
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: April 9, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Andrew Scott McLennan, Jose Antonio Balanza Villegas, Jameel Ahmad Khan, Adan Hernandez Herrera