Patents Assigned to Hypres, Inc.
  • Patent number: 9906191
    Abstract: A superconducting multi-bit digital mixer, designed using rapid single flux quantum (RSFQ) logic, for multiplying two independent digital streams, at least one of these comprising a plurality of parallel bit lines, wherein the output is also a similar plurality of bit lines. In a preferred embodiment, one of the digital streams represents a local oscillator signal, and the other digital stream digital radio frequency input from an analog-to-digital converter. The multi-bit mixer comprises an array of bit-slices, with the local oscillator signal generated using shift registers. This multi-bit mixer is suitable for an integrated circuit with application to a broadband digital radio frequency receiver, a digital correlation receiver, or a digital radio frequency transmitter. A synchronous pulse distribution network is used to ensure proper operation at data rates of 20 GHz or above.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: February 27, 2018
    Assignee: Hypres, Inc.
    Inventors: Timur V. Filippov, Alexander F. Kirichenko, Deepnarayan Gupta
  • Patent number: 9906248
    Abstract: A processor, comprising a first data input configured to receive a stream of samples of a first signal having a spectral space, the stream having a data rate of at least 4 GHz; a second data input configured to receive a stream of samples of a second signal; a multitap correlator, configured to receive the first stream of samples and the second stream of samples, and producing at least one correlation output for each respective sequential sample of the first signal received; and a programmable control configured to alter a relationship of the stream of samples of the first signal and the stream of samples of the second signal, to thereby select, under program control, an alterable correlation output.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: February 27, 2018
    Assignee: Hypres, Inc.
    Inventor: Deepnarayan Gupta
  • Patent number: 9887000
    Abstract: A system and method for high-speed, low-power cryogenic computing are presented, comprising ultrafast energy-efficient RSFQ superconducting computing circuits, and hybrid magnetic/superconducting memory arrays and interface circuits, operating together in the same cryogenic environment. An arithmetic logic unit and register file with an ultrafast asynchronous wave-pipelined datapath is also provided. The superconducting circuits may comprise inductive elements fabricated using both a high-inductance layer and a low-inductance layer. The memory cells may comprise superconducting tunnel junctions that incorporate magnetic layers. Alternatively, the memory cells may comprise superconducting spin transfer magnetic devices (such as orthogonal spin transfer and spin-Hall effect devices). Together, these technologies may enable the production of an advanced superconducting computer that operates at clock speeds up to 100 GHz.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: February 6, 2018
    Assignee: Hypres, Inc.
    Inventors: Oleg A. Mukhanov, Alexander F. Kirichenko, Igo V. Vernik, Ivan P. Nevirkovets, Alan M. Kadin
  • Patent number: 9853645
    Abstract: A superconducting integrated circuit, comprising a plurality of superconducting circuit elements, each having a variation in operating voltage over time; a common power line; and a plurality of bias circuits, each connected to the common power line, and to a respective superconducting circuit element, wherein each respective bias circuit is superconducting during at least one time portion of the operation of a respective superconducting circuit element, and is configured to supply the variation in operating voltage over time to the respective superconducting circuit element.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: December 26, 2017
    Assignee: Hypres, Inc.
    Inventors: Oleg A. Mukhanov, Alexander F. Kirichenko, Dimitri Kirichenko
  • Patent number: 9793933
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 17, 2017
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 9748937
    Abstract: An important component in digital circuits is a phase rotator, which permits precise time-shifting (or equivalently, phase rotation) of a clock signal within a clock period. A digital phase rotator can access multiple discrete values of phase under digital control. Such a device can have application in digital clock synchronization circuits, and can also be used for a digital phase modulator that encodes a digital signal. A digital phase rotator has been implemented in superconducting integrated circuit technology, using rapid single-flux-quantum logic (RSFQ). This circuit can exhibit positive or negative phase shifts of a multi-phase clock. Arbitrary precision can be obtained by cascading a plurality of phase rotator stages. Such a circuit forms a phase-modulator that is the core of a direct digital synthesizer that can operate at multi-gigahertz radio frequencies.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: August 29, 2017
    Assignee: Hypres, Inc.
    Inventor: Amol Ashok Inamdar
  • Patent number: 9747968
    Abstract: A magnetic random access memory (MRAM) array including: a plurality of MRAM cells arranged in an array configuration, each comprising a first type nTron and a magnetic memory element; a wordline select circuit comprising of a second type nTron to drive a plurality of parallel wordlines; and a plurality of bitline select circuits, each comprising of said second type nTron for writing to and reading from a column of memory cells in the array and each capable of selecting a single MRAM cell for a memory read or write operation, wherein the second nTron has a higher current drive than the first nTron.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: August 29, 2017
    Assignees: Raytheon BBN Technologies Corp, Hypres, Inc.
    Inventors: Thomas Ohki, Oleg Mukhanov, Alex Kirichenko
  • Patent number: 9741918
    Abstract: A method for increasing the integration level of superconducting electronic circuits, comprising fabricating a series of planarized electrically conductive layers patterned into wiring, separated by planarized insulating layers, with vias communicating between the conductive layers. Contrary to the standard sequence of patterning from the bottom up, the pattern of vias in at least one insulating layer is formed prior to the pattern of wiring in the underlying conductive layer. This enables a reduction in the number of planarization steps, leading to a fabrication process which is faster and more reliable. In a preferred embodiment, the superconductor is niobium and the insulator is silicon dioxide. This method can provide 10 or more wiring layers in a complex integrated circuit, and is compatible with non-planarized circuits placed above the planarized wiring layers.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: August 22, 2017
    Assignee: Hypres, Inc.
    Inventors: Daniel Yohannes, Alexander F. Kirichenko, John Vivalda, Richard Hunt
  • Patent number: 9741920
    Abstract: Superconducting integrated circuits require several wiring layers to distribute bias and signals across the circuit, which must cross each other both with and without contacts. All wiring lines and contacts must be fully superconducting, and in the prior art each wiring layer comprises a single metallic thin film. An alternative wiring layer is disclosed that comprises sequential layers of two or more different metals. Such a multi-metallic wiring layer may offer improved resistance to impurity diffusion, better surface passivation, and/or reduction of stress, beyond that which is attainable with a single-metallic wiring layer. The resulting process leads to improved margin and yield in an integrated circuit comprising a plurality of Josephson junctions. Several preferred embodiments are disclosed, for both planarized and non-planarized processes.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: August 22, 2017
    Assignee: Hypres, Inc.
    Inventors: Sergey K. Tolpygo, Denis Amparo, Richard Hunt, John Vivalda, Daniel Yohannes
  • Patent number: 9742429
    Abstract: Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: August 22, 2017
    Assignee: Hypres, Inc.
    Inventors: Amol Inamdar, Deepnarayan Gupta
  • Patent number: 9661596
    Abstract: A system and method for receiving a radio frequency signal, comprising a device for digitizing, without prior alteration of frequency, an analog radio frequency representation of each of a plurality of radio frequency signals to produce a respective plurality of digital radio frequency signals having a respective associated radio frequency digital clock, the plurality of digital radio frequency signals having a sufficiently high respective associated clock rate to preserve an information content of an information communication present in the analog radio frequency representation; a switch matrix adapted to concurrently switch the plurality of digital radio frequency signals and associated digital radio frequency clock to ones of a plurality of digital signal processors; and a control adapted to selectively automatically control the concurrent switching of a plurality of digital signals and associated digital clock to the respective plurality of digital signal processors; wherein the digital signal processors
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: May 23, 2017
    Assignee: Hypres, Inc.
    Inventor: Deepnarayan Gupta
  • Patent number: 9647194
    Abstract: An electrical module having electrically interconnecting substrates, each having a corresponding set of preformed electrical contacts, the substrates comprising an electronic circuit, and the resulting module, is provided. A liquid curable adhesive is provided over the set of contacts of a first substrate, and the set of electrical contacts of the second substrate is aligned with the set of electrical contacts of the first substrate. The sets of electrical contacts of the first and second substrate are compressed to displace the liquid curable adhesive from the inter-contact region, and provide electrical communication between the respective sets of electrical contacts. The liquid curable adhesive is then cured to form a solid matrix which maintains a relative compression between the respective sets of electrical contacts. One embodiment of the module comprises a high-speed superconducting circuit which operates at cryogenic temperatures.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: May 9, 2017
    Assignee: Hypres, Inc.
    Inventor: Vladimir V. Dotsenko
  • Patent number: 9627045
    Abstract: A superconducting memory cell includes a magnetic Josephson junction (MJJ) with a ferromagnetic material, having at least two switchable states of magnetization. The binary state of the MJJ manifests itself as a pulse appearing, or not appearing, on the output. A superconducting memory includes an array of memory cells. Each memory cell includes a comparator with at least one MJJ. Selected X and Y-directional write lines in their combination are capable of switching the magnetization of the MJJ. A superconducting device includes a first and a second junction in a stacked configuration. The first junction has an insulating layer barrier, and the second junction has an insulating layer sandwiched in-between two ferromagnetic layers as barrier. An electrical signal inputted across the first junction is amplified across the second junction.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: April 18, 2017
    Assignee: Hypres, Inc.
    Inventors: Oleg A. Mukhanov, Alan M. Kadin, Ivan P. Nevirkovets, Igor V. Vernik
  • Patent number: 9618591
    Abstract: A magnetic resonance system, comprising at least one SQUID, configured to receive a radio frequency electromagnetic signal, in a circuit configured to produce a pulsatile output having a minimum pulse frequency of at least 1 GHz which is analyzed in a processor with respect to a timebase, to generate a digital signal representing magnetic resonance information. The processor may comprise at least one rapid single flux quantum circuit. The magnetic resonance information may be image information. A plurality of SQUIDs may be provided, fed by a plurality of antennas in a spatial array, to provide parallel data acquisition. A broadband excitation may be provided to address a range of voxels per excitation cycle. The processor may digitally compensate for magnetic field inhomogeneities.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: April 11, 2017
    Assignee: Hypres, Inc.
    Inventors: Masoud Radparvar, Alan M. Kadin, Elie K. Track, Richard E. Hitt
  • Patent number: 9595656
    Abstract: An improved microfabrication technique for Josephson junctions in superconducting integrated circuits, based on the use of a double-layer lithographic mask for partial anodization of the side-walls and base electrode of the junctions. The top layer of the mask is a resist material, and the bottom layer is a dielectric material chosen so to maximize adhesion between the resist and the underlying superconducting layer, be etch-compatible with the underlying superconducting layer, and be insoluble in the resist and anodization processing chemistries. The superconductor is preferably niobium, under a silicon dioxide layer, with a conventional photoresist or electron-beam resist as the top layer. This combination results in a substantial increase in the fabrication yield of high-density superconducting integrated circuits, increase in junction uniformity and reduction in defect density. A dry etch more compatible with microlithography may be employed.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: March 14, 2017
    Assignee: Hypres, Inc.
    Inventor: Sergey K. Tolpygo
  • Patent number: 9588191
    Abstract: A superconducting quantum interference devices (SQUID) comprises a superconducting inductive loop with at least two Josephson junction, whereby a magnetic flux coupled into the inductive loop produces a modulated response up through radio frequencies. Series and parallel arrays of SQUIDs can increase the dynamic range, output, and linearity, while maintaining bandwidth. Several approaches to achieving a linear triangle-wave transfer function are presented, including harmonic superposition of SQUID cells, differential serial arrays with magnetic frustration, and a novel bi-SQUID cell comprised of a nonlinear Josephson inductance shunting the linear coupling inductance. Total harmonic distortion of less than ?120 dB can be achieved in optimum cases.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: March 7, 2017
    Assignee: Hypres, Inc.
    Inventors: Victor K. Kornev, Igor I. Soloviev, Nikolai V. Klenov, Oleg A. Mukhanov
  • Patent number: 9577690
    Abstract: A processor, comprising a first data input configured to receive a stream of samples of a first signal having a spectral space, the stream having a data rate of at least 4 GHz; a second data input configured to receive a stream of samples of a second signal; a multitap correlator, configured to receive the first stream of samples and the second stream of samples, and producing at least one correlation output for each respective sequential sample of the first signal received; and a programmable control configured to alter a relationship of the stream of samples of the first signal and the stream of samples of the second signal, to thereby select, under program control, an alterable correlation output.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: February 21, 2017
    Assignee: Hypres, Inc.
    Inventor: Deepnarayan Gupta
  • Patent number: 9552862
    Abstract: A magnetic random access memory (MRAM) array including: a plurality of MRAM cells arranged in an array configuration, each comprising a first type nTron and a magnetic memory element; a wordline select circuit comprising of a second type nTron to drive a plurality of parallel wordlines; and a plurality of bitline select circuits, each comprising of said second type nTron for writing to and reading from a column of memory cells in the array and each capable of selecting a single MRAM cell for a memory read or write operation, wherein the second nTron has a higher current drive than the first nTron.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: January 24, 2017
    Assignees: RAYTHEON BBN TECHNOLOGIES CORP., HYPRES, INC.
    Inventors: Thomas Ohki, Oleg Mukhanov, Alex Kirichenko
  • Patent number: 9548878
    Abstract: A transceiver architecture for wireless base stations wherein a broadband radio frequency signal is carried between at least one tower-mounted unit and a ground-based unit via optical fibers, or other non-distortive media, in either digital or analog format. Each tower-mounted unit (for both reception and transmission) has an antenna, analog amplifier and an electro-optical converter. The ground unit has ultrafast data converters and digital frequency translators, as well as signal linearizers, to compensate for nonlinear distortion in the amplifiers and optical links in both directions. In one embodiment of the invention, at least one of the digital data converters, frequency translators, and linearizers includes superconducting elements mounted on a cryocooler.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: January 17, 2017
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Oleg Mukhanov
  • Patent number: 9520180
    Abstract: A system and method for high-speed, low-power cryogenic computing are presented, comprising ultrafast energy-efficient RSFQ superconducting computing circuits, and hybrid magnetic/superconducting memory arrays and interface circuits, operating together in the same cryogenic environment. An arithmetic logic unit and register file with an ultrafast asynchronous wave-pipelined datapath is also provided. The superconducting circuits may comprise inductive elements fabricated using both a high-inductance layer and a low-inductance layer. The memory cells may comprise superconducting tunnel junctions that incorporate magnetic layers. Alternatively, the memory cells may comprise superconducting spin transfer magnetic devices (such as orthogonal spin transfer and spin-Hall effect devices). Together, these technologies may enable the production of an advanced superconducting computer that operates at clock speeds up to 100 GHz.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: December 13, 2016
    Assignee: Hypres, Inc.
    Inventors: Oleg A. Mukhanov, Alexander F. Kirichenko, Igor V. Vernik, Ivan P. Nevirkovets, Alan M. Kadin