Patents Assigned to Hyundai Engineering Co., Ltd.
  • Publication number: 20210383034
    Abstract: The present disclosure may relate to a steel structure design system including an automated design unit having a basic structural analysis model for a steel structure generated by a structural analysis program, the automated design unit being configured to output automatic design result values under an input basic design condition, a machine learning unit configured to machine-learn the automatic design result values to generate a prediction model for the steel structure, and an extended database formed as the result of storing prediction result values under an extended design condition more than the automatic design result values output by the prediction model.
    Type: Application
    Filed: December 14, 2020
    Publication date: December 9, 2021
    Applicant: Hyundai Engineering Co., Ltd.
    Inventor: Jeong Won Jo
  • Patent number: 9649623
    Abstract: The present invention relates to a process of preparing of a phosphorus-containing phosphorus-alumina support by a sol-gel method and a cobalt/phosphorus-alumina catalyst where cobalt is supported onto the phosphorus-alumina support as an active ingredient. The phosphorus-alumina support is prepared by a sol-gel method and has wide specific surface area with bimodal pore size distribution and high cobalt dispersion, thereby enabling to increase heat and mass transfer, stabilize the structure by modifying the surface property of alumina and decrease the deactivation rate due to the reduced oxidation of cobalt component during the F-T reaction. When Fischer-Tropsch reaction (F-T) is conducted on the catalyst, the catalyst maintains a superior thermal stability, inhibits the deactivation due to water generation during the F-T reaction and also causes relatively high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: May 16, 2017
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea National Oil Corporation, Hyundai Engineering Co. Ltd., SK Innovation Co., Ltd., Korea Gas Corporation
    Inventors: Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee, Ki-Won Jun
  • Patent number: 9308507
    Abstract: Disclosed is a device for revaporizing natural gas. Provided is a device for revaporizing natural gas hydrate pellets, comprising: a pellet charging portion for charging pellets which is formed with an upper valve and a lower valve so as to divide space for adjusting pressure; a storing portion, which communicates with the lower portion of the pellet charging portion, for receiving pellets when the lower valve is opened; a transfer screw, one end of which couples to the lower portion of the storing portion, for transferring the pellets in the storing portion; and a dissolving reaction tub, which is coupled to the other end of the transfer screw, receives pellets from the lower portion of the dissolving reaction tub, and which accommodates heating water.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: April 12, 2016
    Assignees: Dongguk University Industry-Academic Cooperation Foundation, Samsung Heavy Ind. Co., Ltd., Hyundai Engineering Co., Ltd., Sung-Il Turbine Co., Ltd., Daewoo Engineering & Construction Co., Ltd.
    Inventors: Myung Ho Song, Yong Seok Yoon, Hye Jung Hong, Jung Huyk Ahn, Mun Keun Ha, Seok Ku Jeon, Hoon Ahn, Ta Kwan Woo
  • Patent number: 9255234
    Abstract: Disclosed are a device and a method for manufacturing a natural gas hydrate. Provided is the device for manufacturing a natural gas hydrate comprising: an ice slurry generation unit for preparing ice slurry having 13-20% of ice at normal pressure; a first pipe, having one end connected to the ice slurry generation unit for withdrawing the ice slurry from the ice slurry generation unit, and in which a high-pressure pump for increasing pressure on the ice slurry is interposed; a hydrate preparation reactor, which is connected to the other end of the first pipe so as to receive the pressurized ice slurry, and to which natural gas is supplied and mixed, for generating natural gas hydrate slurry; a second pipe, having one end connected to the hydrate preparation reactor, for withdrawing the natural gas hydrate slurry; and a dehydrating portion, which is connected to the other end of the second pipe, for dehydrating the natural gas hydrate slurry.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: February 9, 2016
    Assignees: Dongguk University Industry-Academic Cooperation Foundation, Sung-II Turbine Co., Ltd., Samsung Heavy Ind. Co., Ltd., Daewoo Engineering & Construction Co., Ltd., Hyundai Engineering Co., Ltd.
    Inventors: Myung Ho Song, Yong Seok Yoon, Hye Jung Hong, Jung Huyk Ahn, Mun Keun Ha, Seok Ku Jeon, Hoon Ahn, Ta Kwan Woo
  • Patent number: 8852516
    Abstract: The present invention relates to a continuous separation and discharge apparatus and method of solid catalysts and liquid products for Fischer-Tropsch synthesis reactions, and more particularly, to a continuous separation and discharge apparatus and method of solid catalysts and products for Fischer-Tropsch synthesis reactions involving the conversion of synthetic gas into synthetic oil, by which products of the Fischer-Tropsch synthesis including wax, as a long-chain hydrocarbon, can be stably obtained by continuously separating the products from a slurry comprising solid catalyst particles and the products using periodic pulses of a feeding gas and discharging the products through a lower portion of a reactor.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 7, 2014
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea National Oil Corporation, Hyundai Engineering Co., Ltd., SK Innovation Co., Ltd., Korea Gas Corporation
    Inventors: Kwang Jae Woo, Ki-won Jun, Suk-Hwan Kang, Seung-Moon Kim, Jong-Wook Bae
  • Publication number: 20140057780
    Abstract: The present invention relates to a process of preparing of a phosphorus-containing phosphorus-alumina support by a sol-gel method and a cobalt/phosphorus-alumina catalyst where cobalt is supported onto the phosphorus-alumina support as an active ingredient. The phosphorus-alumina support is prepared by a sol-gel method and has wide specific surface area with bimodal pore size distribution and high cobalt dispersion, thereby enabling to increase heat and mass transfer, stabilize the structure by modifying the surface property of alumina and decrease the deactivation rate due to the reduced oxidation of cobalt component during the F-T reaction. When Fischer-Tropsch reaction (F-T) is conducted on the catalyst, the catalyst maintains a superior thermal stability, inhibits the deactivation due to water generation during the F-T reaction and also causes relatively high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicants: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY, KOREA GAS CORPORATION, DAELIM INDUSTRIAL CO., LTD., KOREA NATIONAL OIL CORPORATION, HYUNDAI ENGINEERING CO., LTD., SK INNOVATION CO., LTD.
    Inventors: Jong-Wook BAE, Seung-Moon KIM, Yun-Jo LEE, Ki-Won JUN
  • Patent number: 8598066
    Abstract: The present invention relates to a process of preparing of a phosphorus-containing phosphorus-alumina support by a sol-gel method and a cobalt/phosphorus-alumina catalyst where cobalt is supported onto the phosphorus-alumina support as an active ingredient. The phosphorus-alumina support is prepared by a sol-gel method and has wide specific surface area with bimodal pore size distribution and high cobalt dispersion, thereby enabling to increase heat and mass transfer, stabilize the structure by modifying the surface property of alumina and decrease the deactivation rate due to the reduced oxidation of cobalt component during the F-T reaction. When Fischer-Tropsch reaction (F-T) is conducted on the catalyst, the catalyst maintains a superior thermal stability, inhibits the deactivation due to water generation during the F-T reaction and also causes relatively high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: December 3, 2013
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea National Oil Corporation, Hyundai Engineering Co. Ltd., SK Innovation Co., Ltd., Korea Gas Corporation
    Inventors: Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee, Ki-won Jun
  • Patent number: 8486340
    Abstract: Disclosed herein is an apparatus for continuously producing and pelletizing gas hydrates. The apparatus includes a gas supply unit, a water supply unit and a reactor. Gas and water are respectively supplied from the gas supply unit and the water supply unit into the reactor. The gas and water react with each other in the reactor. The reactor includes a dual cylinder unit which forms a gas hydrate in such a way as to squeeze a slurry of reaction water formed by the reaction between the gas and water. The dual cylinder unit includes an upper cylinder, a lower cylinder and a connection pipe which connects the upper cylinder to the lower cylinder. The connection pipe has passing holes through which the reaction water in the reactor flows into and out of the connection pipe.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: July 16, 2013
    Assignees: Korea Institute of Industrial Technology, Samsung Heavy Industries Co., Ltd., Hyundai Engineering Co., Ltd., Daewoo Engineering & Construction Co., Ltd., Sungilturbine Co., Ltd.
    Inventors: Ju Dong Lee, Hyoung Jae Kim, Sung Ryul Kim, Sang Yeon Hong, Hye Ok Park, Mun Keun Ha, Seok Ku Jeon, Hoon Ahn, Ta Kwan Woo
  • Patent number: 8367880
    Abstract: Disclosed herein is an apparatus and method for continuously producing and dehydrating gas hydrates. The apparatus includes a gas source, a water source, a reactor, a spinning wheel, and a centrifugal separator. The gas source and the water source are connected to the reactor. Gas and water are respectively supplied from the gas source and the water source into the reactor and react with each other in the reactor to form gas hydrate slurry. The spinning wheel and the centrifugal separator are provided in the reactor. The spinning wheel supplies the formed gas hydrate slurry to the centrifugal separator. The centrifugal separator dehydrates the gas hydrate slurry. Water removed from the gas hydrate slurry by the dehydration of the centrifugal separator is re-supplied into the reactor.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: February 5, 2013
    Assignees: Korea Institute of Industrial Technology, Samsung Heavy Industries Co., Ltd., Hyundai Engineering Co., Ltd., Daewood Engineering & Construction Co., Ltd., Sungilturbine Co., Ltd.
    Inventors: Ju Dong Lee, Jin Woo Lee, Kyung Chan Kang, Kyeong Nam Park, Mun Keun Ha, Seok Ku Jeon, Hoon Ahn, Ta Kwan Woo
  • Publication number: 20120203046
    Abstract: The present invention relates to a high-strength silicoaluminophasphate-34 (SAPO-34) microsphere catalyst, a method for preparing the same, and a method for preparing light olefins by using the same, and when described in more detail, the present invention relates to a method for preparing a SAPO-34 microsphere catalyst, including: spray drying a mixed slurry including a matrix, a binder, an additive, and the like to a SAPO-34 slurry prepared by a hydrothermal synthesizing method using various organic templates such as tetraethylammonium hydroxide (TEAOH), and the like alone or in mixtures to prepare microspheres, and firing the microspheres, and to a SAPO-34 microsphere catalyst for a circulating-fluidized bed reactor, prepared by the preparation method. The SAPO-34 microsphere catalyst of the present invention has excellent reaction activity while having high strength, and thus is appropriate for use in a circulating-fluidized bed reactor requiring high strength of the catalyst.
    Type: Application
    Filed: October 4, 2010
    Publication date: August 9, 2012
    Applicants: HYUNDAI ENGINEERING CO., LTD., KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Ho Jeong Chae, Soon Yong Jeong, Chul Ung Kim, Kwang Eun Jeong, Tae Wan Kim
  • Patent number: 8183301
    Abstract: The present invention relates to a method for preparing liquid hydrocarbons via a slurry phase Fischer-Tropsch (F-T) synthesis. In particular, the present invention relates to a method for preparing liquid hydrocarbons from syngas via slurry phase F-T synthesis using a catalyst, which can prevent the decrease in catalyst activity and filter clogging due to catalyst aggregation, simultaneously with improving selectivity for C5 or higher hydrocarbons by using C7-C12 alcohols having a high boiling point as an additive for a slurry reaction solvent or recycling the same alcohol separated from by-products that are generated during the F-T reaction. Since the method of the present invention is more carbon-effective and shows improved long-term stability of a reactor, it can be effectively used in the preparation of liquid hydrocarbons.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 22, 2012
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea Gas Corporation, Korea National Oil Corporation, Hyundai Engineering Co., Ltd., SK Innovation Co., Ltd.
    Inventors: Jong Hyeok Oh, Jong Wook Bae, Sun Ju Park, Yun Jo Lee, Ki won Jun
  • Publication number: 20110263913
    Abstract: Disclosed herein is an apparatus and method for continuously producing and dehydrating gas hydrates. The apparatus includes a gas source, a water source, a reactor, a spinning wheel, and a centrifugal separator. The gas source and the water source are connected to the reactor. Gas and water are respectively supplied from the gas source and the water source into the reactor and react with each other in the reactor to form gas hydrate slurry. The spinning wheel and the centrifugal separator are provided in the reactor. The spinning wheel supplies the formed gas hydrate slurry to the centrifugal separator. The centrifugal separator dehydrates the gas hydrate slurry. Water removed from the gas hydrate slurry by the dehydration of the centrifugal separator is re-supplied into the reactor.
    Type: Application
    Filed: May 24, 2010
    Publication date: October 27, 2011
    Applicants: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY, SAMSUNG HEAVY INDUSTRIES CO., LTD., SUNG IL CO., LTD. (SIM), DAEWOO ENGINEERING & CONSTRUCTION CO., LTD., HYUNDAI ENGINEERING CO., LTD.
    Inventors: Ju Dong Lee, Jin Woo Lee, Kyung Chan Kang, Kyeong Nam Park, Mun Keun Ha, Seok Ku Jeon, Hoon Ahn, Ta Kwan Woo
  • Publication number: 20110064643
    Abstract: Disclosed herein is an apparatus for continuously producing and pelletizing gas hydrates. The apparatus includes a gas supply unit, a water supply unit and a reactor. Gas and water are respectively supplied from the gas supply unit and the water supply unit into the reactor. The gas and water react with each other in the reactor. The reactor includes a dual cylinder unit which forms a gas hydrate in such a way as to squeeze a slurry of reaction water formed by the reaction between the gas and water. The dual cylinder unit includes an upper cylinder, a lower cylinder and a connection pipe which connects the upper cylinder to the lower cylinder. The connection pipe has passing holes through which the reaction water in the reactor flows into and out of the connection pipe.
    Type: Application
    Filed: May 10, 2010
    Publication date: March 17, 2011
    Applicants: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY, SAMSUNG HEAVY INDUSTRIES CO., LTD., HYUNDAI ENGINEERING CO., LTD., DAEWOO ENGINEERING & CONSTRUCTION CO., LTD., SUNG IL CO., LTD (SIM)
    Inventors: Ju Dong LEE, Hyoung Jae Kim, Sung Ryul Kim, Sang Yeon Hong, Hye Ok Park, Mun Keun Ha, Seok Ku Jeon, Hoon Ahn, Ta Kwan Woo
  • Publication number: 20100130349
    Abstract: The present invention relates to a process of preparing of a phosphorus-containing phosphorus-alumina support by a sol-gel method and a cobalt/phosphorus-alumina catalyst where cobalt is supported onto the phosphorus-alumina support as an active ingredient. The phosphorus-alumina support is prepared by a sol-gel method and has wide specific surface area with bimodal pore size distribution and high cobalt dispersion, thereby enabling to increase heat and mass transfer, stabilize the structure by modifying the surface property of alumina and decrease the deactivation rate due to the reduced oxidation of cobalt component during the F-T reaction. When Fischer-Tropsch reaction (F-T) is conducted on the catalyst, the catalyst maintains a superior thermal stability, inhibits the deactivation due to water generation during the F-T reaction and also causes relatively high conversion of carbon monoxide and stable selectivity of liquid hydrocarbons.
    Type: Application
    Filed: August 6, 2008
    Publication date: May 27, 2010
    Applicants: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY, DAELIM INDUSTRIAL CO., LTD., DOOSAN MECATEC CO., LTD., KOREA INTERNATIONAL CORPORATION, HYUNDAI ENGINEERING CO., LTD., SK ENERGY CO., LTD.
    Inventors: Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee, Ki-won Jun
  • Publication number: 20100093523
    Abstract: The present invention relates to a cobalt/phosphorus-alumina catalyst in which cobalt is supported as an active component on a phosphorus-alumina support wherein phosphorus is supported on alumina surface. With a bimodal pore structure of pores of relatively different pore sizes, the catalyst provides superior heat- and matter-transfer performance and excellent catalytic reactivity. Especially, when Fischer-Tropsch (F-T) reaction is performed using the catalyst, deactivation by the water produced during the F-T reaction is inhibited and, at the same time, the dispersion and reducing property of cobalt and other active component are improved. Therefore, the cobalt/phosphorus-alumina catalyst for F-T reaction in accordance with the present invention provides good carbon monoxide conversion and stable selectivity for liquid hydrocarbons.
    Type: Application
    Filed: January 30, 2008
    Publication date: April 15, 2010
    Applicants: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY, DAELIM INDUSTRIAL CO., LTD., DOOSAN MECATEC CO., LTD., KOREA NATIONAL OIL CORPORATION, HYUNDAI ENGINEERING CO., LTD., SK ENERGY CO., LTD.
    Inventors: Ki-won Jun, Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee
  • Patent number: 6123747
    Abstract: An apparatus and method for manufacturing barnyard manure using sewage and night-soil sludge for use in farmlands and flower gardens so as to prevent secondary contamination of the environment quickly, at a low cost, and with high efficiency.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: September 26, 2000
    Assignee: Hyundai Engineering Co., Ltd.
    Inventors: Dong Wook Kim, Jae Kyung Jo, No Hyuk Kwak, Jae Gun Bae, Chung Hwan Oh, Youn Gun Chin, Yong Sik Lee
  • Patent number: 5843305
    Abstract: A sewage and wastewater treatment plant which comprises a bioreactor having an anaerobic treatment tank for anaerobic treatment, an aerobic contacting tank and a microorganism separation tank located in between the anaerobic and aerobic tanks respectively. In the anaerobic and aerobic tanks a media is provided in a layered honeycomb type arrangement for distributing the wastewater and sewage to be treated and for adherence of microorganisms.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: December 1, 1998
    Assignee: Hyundai Engineering Co., Ltd.
    Inventors: Dong Wook Kim, In Kook Kang, Jin Han Chang, Jie Soo Kim
  • Patent number: 5143618
    Abstract: An organic wastewater treatment process which combines a sludge blanket layer process with a media layer process for improving liquid treatment efficiency and cost savings.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: September 1, 1992
    Assignee: Hyundai Engineering Co., Ltd.
    Inventors: Shin W. Hyun, In C. Kang