Patents Assigned to Imaging Systems Technology INC
  • Patent number: 8106586
    Abstract: An AC or DC PDP containing a fluorescent conversion material (FCM) that produces IR when excited by a gas discharge. In one embodiment, the fluorescent conversion material is rare earth doped chalcogenide. The PDP may comprise a multiplicity of plasma-sells or plasma-tubes on a substrate, each plasma-shell or plasma-tube containing FCM.
    Type: Grant
    Filed: May 31, 2008
    Date of Patent: January 31, 2012
    Assignee: Imaging Systems Technology, Inc.
    Inventors: Carol Ann Wedding, Oliver M. Strbik, III, Edwin F. Peters, Thomas J. Pavliscak
  • Patent number: 7978154
    Abstract: An AC or DC gas discharge plasma display panel (PDP) device having one or more substrates and a multiplicity of pixels or sub-pixels that are defined by a hollow plasma-shell filled with an ionizable gas. The plasma-shell is illustrated with reference to a plasma-dome, but other plasma-shell shapes may be used including plasma-disc and plasma-sphere. A plasma-dome has at least one domed or round side and one opposing flat side such as a dome top and flat bottom or vice versa. One or more other sides or edges may also be flat or non-flat. Two or more addressing electrodes are in electrical contact with each plasma-dome, at least one electrode being in electrical contact with a side or end of the plasma-dome that is not flat. The electrical contact may include a conductive pad in electrical contact with the electrode and/or the plasma-dome.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: July 12, 2011
    Assignee: Imaging Systems Technology, Inc.
    Inventors: Oliver M. Strbik, III, Daniel K. Wedding, Carol Ann Wedding
  • Patent number: 7969092
    Abstract: A single substrate AC and/or DC gas discharge (plasma) display device comprised of hollow microspheres containing ionizable gas at a predetermined pressure, each microsphere being positioned on the surface of the substrate or within a substrate cavity, well, or hollow. Each microsphere is in electrical contact with 2, 3, or more electrodes. The AC or DC gas discharge within each microsphere emits photons in the visible and/or invisible range. In one embodiment, photons from the gas discharge within a microsphere excite a luminescent substance or material such as a phosphor that emits photons in the visible and/or invisible spectrum. The microsphere may contain the luminescent substance or the substance may be located separately from, but in close proximity to, the microsphere.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 28, 2011
    Assignee: Imaging Systems Technology, Inc.
    Inventor: Donald K. Wedding
  • Patent number: 7833076
    Abstract: A PDP constructed out of one or more plasma-shells with an organic luminescent substance(s) located in close proximity to each plasma-shell. Each plasma-shell is a hollow geometric body filled with an ionizable gas. Photons from the gas discharge inside the plasma-shell excite the luminescent substance. In one embodiment the luminescent substance is located on the external surface of the plasma-shell. In another embodiment, the luminescent substance is located inside the plasma-shell. The plasma-shell may be made of an inorganic luminescent material with organic luminescent material located on the inside or outside of the plasma-shell. Plasma-shell includes plasma-sphere, plasma-disc, and plasma-dome. The plasma-shell may be used in combination with a plasma-tube.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: November 16, 2010
    Assignee: Imaging Systems Technology, Inc.
    Inventors: Oliver M. Strbik, III, Carol Ann Wedding
  • Patent number: 7825667
    Abstract: A microwave imaging process, and a system controlled by an associated software product, illuminate a target with microwaves from a transmitting antenna. Receiving antennas receive microwaves scattered by the target, and form microwave data. The illumination and receiving repeat over multiple transmitting antennas and multiple microwave frequencies. The microwave data is processed to form permittivity and conductivity images by selecting a background dispersion model for permittivity and conductivity. Permittivity and conductivity dispersion coefficients are determined, and permittivity and conductivity distributions are calculated, for each of the microwave frequencies. Forward solutions at multiple frequencies are determined from property distributions, and a dispersion coefficient based Jacobian matrix is determined. Dispersion coefficient updates are determined using the microwave data, and the dispersion coefficients are updated.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 2, 2010
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Qianqian Fang, Paul M. Meaney, Keith D. Paulsen
  • Patent number: 7808451
    Abstract: An organic electroluminescent display device connected by a blocking diode in series to an organic light-emitting diode (OLED). Each pixel or subpixel of the electroluminescent display device comprises an OLED, a blocking diode to prevent the OLED from being reversed biased, a rectification diode to isolate the column electrode from unselected rows and a capacitor as a memory device. The charge stored in each memory capacitor may be increased by the blocking diode in series with each OLED. A frame period of the display device is divided into sub-frames that have address and light emission periods. Current mode data programming is used to address the device in each sub-frame. A ramp waveform is applied to the row electrode during the light emission period, to cause the capacitor to discharge through the OLED and control the forward current level.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 5, 2010
    Assignee: Imaging Systems Technology, Inc.
    Inventor: James C. Rutherford
  • Patent number: 7755010
    Abstract: A non-invasive microwave analysis method determines scattered phase and/or amplitude data for a liquid in a container. A transmitter antenna transmits microwaves that scatter from the container and the liquid in the container. One or more receiver antennas convert the microwaves into microwave electronic signals that are processed to determine the scattered phase and/or amplitude data. Another non-invasive microwave screening method includes placing a container of an unknown liquid in a tank. The container is separated by a membrane from coupling liquid in the tank. Microwave radiation transmits from a transmitter antenna and scatters from the container and the unknown liquid. One or more receiver antennas convert the microwave radiation into microwave electronic signals. The microwave electronic signals are processed to determine scattered phase and/or amplitude data. A pass result or a fail result is determined based on the scattered phase and/or amplitude data.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: July 13, 2010
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Edward M Godshalk, Timothy Raynolds, Paul M. Meaney, Keith D. Paulsen, Greg Burke
  • Patent number: 7319212
    Abstract: A non-invasive microwave analysis system determines scattered phase and/or amplitude data for a liquid in a container. A tank holds coupling liquid; the system includes a membrane for separating the liquid container from the coupling liquid. A transmitter antenna situated within the coupling liquid transmits microwaves. One or more receiver antennas within the coupling liquid convert microwave radiation that scatters from the liquid in the container into microwave electronic signals. Electronics process the microwave electronic signals to determine scattered phase and/or amplitude values of the microwave radiation.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: January 15, 2008
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Edward M Godshalk, Timothy Raynolds, Paul M. Meaney, Keith D. Paulsen, Greg Burke
  • Patent number: 7247989
    Abstract: There is disclosed a gas discharge display device comprised of microspheres containing ionizable gas, each microsphere being positioned within a cavity, well, or hollow. Photons from the gas discharge within a microsphere excite a phosphor such that the phosphor emits wavelengths in the visible and/or invisible spectrum. The invention is described in detail with reference to an AC gas discharge (plasma) display.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: July 24, 2007
    Assignee: Imaging Systems Technology, Inc
    Inventor: Donald K Wedding
  • Patent number: 7164105
    Abstract: Non-invasive microwave analysis systems and methods determine scattered phase data for a liquid in a container. A transmitter antenna situated within coupling liquid separated from the container by a flexible membrane transmits microwaves that scatter from the container and the liquid in the container. One or more receiver antennas within the coupling liquid convert the microwaves into microwave electronic signals that are processed to determine the scattered phase data. Non-invasive microwave analysis systems and methods image a portion of a biological subject. A transmitter antenna situated within coupling liquid separated from the subject by a flexible membrane transmits microwaves that scatter from the container and the subject. One or more receiver antennas within the coupling liquid convert the microwaves into microwave electronic signals that are processed to reconstruct a cross-sectional image of the subject.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: January 16, 2007
    Assignee: Microwave Imaging Systems Technologies, Inc.
    Inventors: Edward M Godshalk, Timothy Raynolds, Paul M. Meaney, Keith D. Paulsen, Greg Burke
  • Patent number: 6985125
    Abstract: Addressing and sustaining of a surface discharge AC plasma display panel by applying addressing voltages to at least one section of the panel while at least one other section of the panel is being simultaneously sustained.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: January 10, 2006
    Assignee: Imaging Systems Technology, Inc.
    Inventors: Bala K Velayudhan, Carol A. Wedding, Jeffrey W. Guy
  • Patent number: 6919685
    Abstract: This invention comprises the use of microspheres containing ionizable gas in a gas discharge (plasma) display, photons for the gas discharge within a microsphere exciting a phosphor such that the phosphor emits wavelengths in both the visible or invisible spectrum. The invention is described in detail hereinafter with reference to an AC gas discharge (plasma) display.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: July 19, 2005
    Assignee: Imaging Systems Technology INC
    Inventors: Timothy M. Henderson, Donald K. Wedding
  • Patent number: 6448788
    Abstract: An improved method and apparatus for microwave imaging of an inhomogeneous target, in particular of biological tissue, compensates for the interactions between active antennae and nonactive antennae. Measured electric field data are processed in magnitude and phase form so that unwrapped phase information may be used directly in the image reconstruction. Initial finite element measurements and calculations are used to determine the perimeter dimensions of the target being examined, resulting in more accurate image reconstructions. An improved regularization technique is a hybrid of a Marquardt regularization scheme with a spatial filtering technique and a Tikhonov regularization scheme. An improved switching matrix enables simultaneous sampling of electric field data from a plurality of receiving antennae.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: September 10, 2002
    Assignee: Microwave Imaging System Technologies, Inc.
    Inventors: Paul M. Meaney, Keith D. Paulsen, Margaret W. Fanning
  • Patent number: 5841288
    Abstract: The invention provides apparatus and methods for determining electric field properties of an inhomogeneous target. The electric property distribution on a coarse mesh discretization of the target is first estimated; and then the electric field on a fine mesh discretization of the target is computed. The fine mesh has finer discretization than the coarse mesh and is overlapping with the coarse mesh. The electric field is then measured at preselected measurement sites within a homogeneous region external to the target. A Jacobian matrix is also calculated which represents a sensitivity calculation relative to a change in the electric field at selected measurement sites due to a perturbation in the electric property distribution on the coarse mesh. A difference vector is formed between the computed electric field and the measured electric field, and an update vector is added to the electrical property distribution as a function of the difference vector and the Jacobian matrix.
    Type: Grant
    Filed: February 11, 1997
    Date of Patent: November 24, 1998
    Assignee: Microwave Imaging System Technologies, Inc.
    Inventors: Paul M. Meaney, Keith D. Paulsen