Patents Assigned to Infinera Corporation
  • Patent number: 11121903
    Abstract: Consistent with the present disclosure, an encoder circuit is provided at a transmit side of an optical fiber link that maps an input sequence of bits of fixed length k a sequence of symbols of a codeword of length n, such that the symbols of the codeword define a predetermined transmission probability distribution. Preferably, each symbol of the codeword is generated during a corresponding clock cycle, such that after n clock cycles, a complete codeword corresponding to the input bit sequence is output. On a receive end of the link, a decoder is provided that outputs the k-bit sequence every n clock cycles. Accordingly, buffers need not be provided at the output of the encoder and the input of the decoder, such that processing of the input sequence, codewords, and output sequence may be achieved efficiently without large buffers and complicated circuitry. Moreover, the input sequence, with any binary alphabet may be matched to a desired output distribution with any arbitrary alphabet.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: September 14, 2021
    Assignee: Infinera Corporation
    Inventors: Mehdi Torbatian, Deyuan Chan, Han Henry Sun, Sandy Thomson, Kuang-Tsan Wu
  • Patent number: 11095374
    Abstract: Techniques are described for implementing an out-of-band communication channel used to exchange control channel information in sub-carrier-based optical communication systems. In an example implementation, an apparatus includes laser operable to supply an optical signal, a digital signal processor operable to supply digital signals, a digital to analog circuitry operable to provide analog signals based on the digital signals, and driver circuitry is coupled to the digital to analog circuitry and operable to supply at least one drive signal. The apparatus also includes a modulator operable to receive said at least one drive signal, modulate the optical signal based on said at least one drive signal to provide a plurality of optical subcarriers, amplitude modulate the plurality of optical subcarriers at a first frequency to carry first control information, and modulate the plurality of subcarriers at a second frequency to carry second control information.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: August 17, 2021
    Assignee: Infinera Corporation
    Inventors: Amir Jafari, Steven J. Hand, Mohamed Osman
  • Patent number: 11095373
    Abstract: Optical network systems are disclosed, including a system comprising a transmitter including a digital signal processor operable to receive a plurality of independent data streams and output a plurality of digital signals based on the plurality of independent data streams, digital-to-analog circuitry operable to supply a plurality of analog signals based on the plurality of digital signals, a laser operable to supply an optical signal, a modulator operable to receive the optical signal and supply a modulated optical signal based on the plurality of analog signals, including a plurality of optical subcarriers, each of which being associated with a corresponding one of the plurality of independent data streams, a first one of the plurality of optical subcarriers having a first spectral width and a second one of the plurality of optical subcarriers having a second spectral width different than the first spectral width; and a first and a second receiver.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: August 17, 2021
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Patent number: 11088764
    Abstract: Techniques are described for implementing an out-of-band communication channel used to exchange control channel information in sub-carrier-based optical communication systems. In an example implementation, a transmitter includes a laser operable to supply an optical signal, a digital signal processor operable to supply first electrical signals based on first data input to the digital signal processor and second data input to the digital signal processor, digital-to-analog conversion circuitry operable to output second electrical signals based on the first electrical signals, modulator driver circuitry is operable to output third electrical signals based on the second electrical signals, and an optical modulator operable to supply first and second modulated optical signals based on the third electrical signals. The first modulated optical signal includes a plurality of optical subcarriers carrying user data. The second modulated optical signal is polarization modulated based on the second data.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: August 10, 2021
    Assignee: Infinera Corporation
    Inventors: Amir Jafari, Steven J. Hand, Mohamed Osman
  • Patent number: 11075694
    Abstract: A network or system in which a hub or primary node may communicate with a plurality of leaf or secondary nodes. The hub node may operate or have a capacity greater than that of the leaf nodes. Accordingly, relatively inexpensive leaf nodes may be deployed to receive data carrying optical signals from, and supply data carrying optical signals to, the hub node. One or more connections may couple each leaf node to the hub node, whereby each connection may include one or more spans or segments of optical fibers, optical amplifiers, optical splitters/combiners, and optical add/drop multiplexer, for example. Optical subcarriers may be transmitted over such connections, each carrying a data stream. The subcarriers may be generated by a combination of a laser and a modulator, such that multiple lasers and modulators are not required, and costs may be reduced.
    Type: Grant
    Filed: September 22, 2019
    Date of Patent: July 27, 2021
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven J. Hand, David F. Welch
  • Patent number: 11039224
    Abstract: A telecommunication appliance and method is described. In the method, a flexible cover part of an appliance cover of a telecommunication appliance supported by a telecommunication rack is removed while the telecommunication appliance is in service and passing data. The telecommunication appliance has a plurality of pluggable optical modules installed within connectors within a space encompassed by the appliance cover. The connectors are operably connected to a power supply supplying power to the connectors. When a first one of the connectors is devoid of a pluggable optical module being installed within the first one of the connectors, a first pluggable optical module is plugged into the first one of the connectors.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: June 15, 2021
    Assignee: Infinera Corporation
    Inventors: Magnus Olson, Jonas Viklund, Erik Reinholdsson, Einar In de Betou
  • Patent number: 11038596
    Abstract: Consistent with the present disclosure, codewords indicative of a super Gaussian distribution may be encoded and decoded using the encoders and decoders disclosed herein. Based on such codewords, symbols may be transmitted in accordance or in conformance with a super Gaussian distribution to tailor the SE of an optical signal or subcarrier for a given link having non-linear degradations and shaping gain. Such tailed SE may not be achievable with a Gaussian symbol transmission probability distribution.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: June 15, 2021
    Assignee: Infinera Corporation
    Inventor: Mohsen N. Tehrani
  • Patent number: 11018767
    Abstract: A method and system are herein disclosed. A coherent optical receiver receives a first optical data carrier signal at a first instant of time and a second optical data carrier signal at a second instant of time, generates at least four first data streams from the first optical data carrier signal and at least four second data streams from the second optical data carrier signal; and circuitry calculates a first aggregate power of the first data streams and a second aggregate power of the second data streams; applies an adjustable temporal low pass filter to the first aggregate power and the second aggregate power resulting in a compensation power, the adjustable temporal low pass filter adjusted to achieve a performance metric; and phase-rotates the first data streams and the second data streams proportional to the compensation power.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: May 25, 2021
    Assignee: Infinera Corporation
    Inventors: Pierre Herve Mertz, Adbullah Karar
  • Patent number: 10992389
    Abstract: Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor receiving a plurality of independent data streams, and supplying a plurality of digital subcarrier outputs, based on the plurality of independent data streams, and configurable to vary the frequency spacing between two or more of the plurality of digital subcarrier outputs; the transmitter configured to output a modulated optical signal including a plurality of optical subcarriers based on the digital subcarrier outputs wherein based on first ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality subcarriers by a first gap, and based on second ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality of subcarriers by a second gap different than the first.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: April 27, 2021
    Assignee: Infinera Corporation
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Patent number: 10979270
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for transmitting signals with a high data rate. In some implementations, an apparatus includes a first digital signal processor outputting first data at a first data rate. A second digital signal processor outputting second data at a second data rate. A filter circuitry receiving and up-sampling the first and second data. Additionally, the apparatus includes a combiner circuit that receives the first up-sampled data and the second up-sampled data, the combiner circuit combining the first and second up-sampled data to provide a multiplexed output, the multiplexed output having a third data rate that is greater than the first data rate or the second data rate.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: April 13, 2021
    Assignee: Infinera Corporation
    Inventors: Han Sun, Avid Lemus, Ahmed Awadalla, Kuang-Tsan Wu
  • Patent number: 10972184
    Abstract: This disclosure describes digitally generating sub-carriers (SCs) to provide isolation and dynamic allocation of bandwidth between uplink and downlink traffic between transceivers that are communicatively coupled via a bidirectional link including one or more segments of optical fiber. Separate uplink and downlink communication channels may be created using digitally generated SCs and using the same transmitter laser. In some implementations, one or more of the nodes include a transceiver having at least one laser and one digital signal processing (DSP) operable for digitally generating at least two SCs and detecting at least two SCs. The transceiver can transmit selected SCs, and can receive other SCs. Accordingly, the transceiver can facilitate bidirectional communication, for example, over a single optical fiber link. In some instances, techniques can facilitate dynamic bandwidth assignment by facilitating adding or blocking of optical subcarriers from transmission in an uplink or downlink direction.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: April 6, 2021
    Assignee: Infinera Corporation
    Inventors: Magnus Olson, Amir Rashidinejad
  • Patent number: 10965439
    Abstract: Methods, systems, transceivers, and apparatus are included for clock synchronizing an optical system and multiple leaf systems. In some implementations, a transceiver includes a receiver and a transmitter. The receiver includes an optical hybrid circuit operable to receive a first modulated optical signal and local oscillator light and to supply optical mixing products based on the first modulated optical signal and the local oscillator light. A photodiode circuit operable to supply an electrical signal based on the optical mixing products. An analog-to-digital conversion circuitry operable to supply digital signals based on the electrical signal. A digital signal processor operable to generate a supply signal based on the digital signals and provide the supply signal to a reference clock circuit for generating a clock signal. The transmitter is operable to output a second modulated optical signal that includes a timing of data based on the clock signal.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: March 30, 2021
    Assignee: Infinera Corporation
    Inventors: Han H. Sun, John D. McNicol, Kuang-Tsan Wu
  • Patent number: 10966005
    Abstract: A telemetry manager receives, from a network server, global data collection information about network components in an optical network device. The global data collection information includes identifiers for network nodes in the network components from which telemetry data are to be collected, and reporting frequency and encoding format for sending collected telemetry data to the network server. The telemetry manager identifies, from the global data collection information, local data collection information specified for a network component, and sends this information to a telemetry agent in the network component. The telemetry manager receives telemetry data generated by a network node of the network component, where the data is provided according to instructions in the local data collection information. The telemetry manager converts the telemetry data from its native format to an encoding format specified by the global data collection information, and sends the encoded telemetry data to the network server.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 30, 2021
    Assignee: Infinera Corporation
    Inventors: Abhinava Sadasivarao, Sharfuddin Syed, Sachin Jain, Lu Biao, Ashok Kunjidhapatham, Anthony Jorgenson, Tjandra Trisno, Mana Palai, Biju Mathew, Mohit Misra, Balaji Gopalakrishnan
  • Patent number: 10962296
    Abstract: A method of fabricating a heat pipe may include providing a first material as a body section. The method may include stamping or etching the body section to include the cavity. A portion of the body section may constitute a wall of the cavity. The method may include stamping or etching the wall of the cavity to provide a set of corrugations on a portion of the wall of the cavity. The method may include forming an opening in the wall of the cavity. The method may include attaching a lid over the cavity. The lid constituting at least a portion of a hermetic seal of the cavity. The method may include attaching a cover to the body section approximately adjacent to the opening in the cavity. The method may include attaching a valve to the body section approximately at the opening to the cavity.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: March 30, 2021
    Assignee: Infinera Corporation
    Inventors: John W. Osenbach, Jie Tang, S. Eugene Messenger, John Coronati
  • Patent number: 10965378
    Abstract: Techniques are described for implementing an out-of-band communication channel used to exchange control channel information in sub-carrier-based optical communication systems. In an example implementation, an apparatus includes an optical tap coupled to an optical communication path carrying a modulated optical signal carrying a plurality of optical subcarriers. The optical tap has a first output configured to supply a first portion of the modulated optical signal and a second output configured to supply a second portion of the modulated optical signal. The plurality of optical subcarriers are amplitude modulated based on control data at a first frequency, and each of the plurality of optical subcarriers is modulated to carry user data at a second frequency greater than the first frequency. The apparatus is configured to supply the control based on the first portion of the modulated optical signal.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: March 30, 2021
    Assignee: Infinera Corporation
    Inventors: Amir Jafari, Steven J. Hand, Mohamed Osman
  • Patent number: 10917363
    Abstract: An optimized communication network may include an edge switch capable of transporting and switching L1 and L2 traffic and configured to selectively transport and switch L2 traffic using L1 protocols.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 9, 2021
    Assignee: Infinera Corporation
    Inventors: Abishek Gopalan, Snigdho Bardalai, Biao Lu, Onur Turkcu, Parthiban Kandappan
  • Patent number: 10911150
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clock recovery in subcarrier based coherent optical systems. In one aspect, an apparatus includes a plurality of phase detectors configured to generate a plurality of phase detection outputs by detecting a plurality of digital signals associated with a plurality of frequency bands, each of the plurality of phase detection outputs being associated with a respective one of the plurality of frequency bands, alignment circuitry coupled to the plurality of phase detectors and configured to align phases of the plurality of phase detection outputs to be substantially same, and averaging circuitry coupled to the alignment circuitry and configured to generate a particular output based on the plurality of phase detection outputs with the aligned phases. The plurality of digital signals is adjusted based on the particular output.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: February 2, 2021
    Assignee: Infinera Corporation
    Inventors: Mohsen Nader Tehrani, Han Henry Sun, David Krause
  • Patent number: 10911321
    Abstract: A device may be configured to receive a text file including network information for an optical network. The network information may include information for an optical route in the optical network. The device may generate a user interface based on the text file. The user interface may display a representation of the optical route. The device may provide the user interface for display and receive a user input via the user interface. The device may change the representation of the optical route displayed by the user interface based on the user input and the network information included in the text file.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: February 2, 2021
    Assignee: Infinera Corporation
    Inventors: Karthikeyan M. Nagarajan, Yashpal Kumar, Geetha Chandu, Pydi Kasi Viswanadham, Steven J. Hand
  • Patent number: 10841211
    Abstract: Methods, devices, and systems for mapping transport segment labels to packet network endpoints using a mapping server. In some implementations, an end point address in an edge domain is received from an edge router, a mapping of one of the end point address to a transport segment label is received from a network device, the mapping is stored in a non-transitory memory device, and the mapping is transmitted to the edge router.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: November 17, 2020
    Assignee: Infinera Corporation
    Inventors: Madhukar Anand, Ramesh Subrahmaniam, Sanjoy Bardhan
  • Patent number: 10824351
    Abstract: Systems and methods are described in which circuitry of a first controller of a first node receives a first signal indicating an optical loss of signal within the first path. Circuitry of a second controller of the first node on the first path within a transport network generates a second signal indicating a failure within the first path. The first controller accessing a network topology database determines that restoration of the first path would be ineffective due to there being no alternate path, and signals a second node downstream in the first path with the second signal indicating the failure within the first path, and a third signal indicating that restoration of the first path would be ineffective due to there being no alternate path.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: November 3, 2020
    Assignee: Infinera Corporation
    Inventors: Nikhil Kumar Satyarthi, Amit Satbhaiya, Sanjeev Ramachandran, Rajan Rao, Baranidhar Ramanathan